Abstract
Nowadays, computer simulations have become a standard tool in essentially all fields of chemistry, condensed matter physics, and materials science. In order to keep up with state-of-the-art experiments and the ever growing complexity of the investigated problems, there is a constantly increasing need for simulations of more realistic, i.e., larger, model systems with improved accuracy. In many cases, the availability of sufficiently efficient interatomic potentials providing reliable energies and forces has become a serious bottleneck for performing these simulations. To address this problem, currently a paradigm change is taking place in the development of interatomic potentials. Since the early days of computer simulations simplified potentials have been derived using physical approximations whenever the direct application of electronic structure methods has been too demanding. Recent advances in machine learning (ML) now offer an alternative approach for the representation of potential-energy surfaces by fitting large data sets from electronic structure calculations. In this perspective, the central ideas underlying these ML potentials, solved problems and remaining challenges are reviewed along with a discussion of their current applicability and limitations.
References
73
Referenced
1,070
{'volume-title': 'Machine Learning', 'year': '1997', 'key': '2024052420505624800_c1'}
/ Machine Learning (1997)10.1146/annurev.pc.45.100194.002255
/ Annu. Rev. Phys. Chem. (1994)10.1002/anie.199305031
/ Angew. Chem. Int. Ed. (1993)10.1016/0022-2364(89)90021-8
/ J. Magn. Reson. (1989)10.1002/jcc.10361
/ J. Comput. Chem. (2004)10.1021/ci0203702
/ J. Chem. Inf. Comput. Sci. (2002){'edition': '3rd ed.', 'volume-title': 'Neural Networks and Learning Machines', 'year': '2008', 'key': '2024052420505624800_c7'}
/ Neural Networks and Learning Machines (2008){'volume-title': 'Gaussian Processes for Machine Learning', 'year': '2006', 'key': '2024052420505624800_c8'}
/ Gaussian Processes for Machine Learning (2006){'volume-title': 'An Introduction to Support Vector Machines and Other Kernel-based Learning Methods', 'year': '2000', 'key': '2024052420505624800_c9'}
/ An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (2000)10.1016/j.cossms.2016.07.002
/ Curr. Opin. Solid State Mater. Sci. / Atomistic calculations and materials informatics: A review10.1557/jmr.2016.80
/ J. Mater. Res. (2016)10.1038/srep02810
/ Sci. Rep. (2013)10.1107/S0108768102003890
/ Acta Crystallogr. (2002)10.1016/0003-9861(78)90204-7
/ Arch. Biochem. Biophys. (1978)10.1002/andp.19273892002
/ Ann. Phys. (1927){'volume-title': 'Ab initio Molecular Dynamics: Basic Theory and Advanced Methods', 'year': '2009', 'key': '2024052420505624800_c16'}
/ Ab initio Molecular Dynamics: Basic Theory and Advanced Methods (2009){'edition': '3rd ed.', 'volume-title': 'Numerical Recipes: The Art of Scientific Programming', 'year': '2007', 'key': '2024052420505624800_c17'}
/ Numerical Recipes: The Art of Scientific Programming (2007){'volume-title': 'Curve and Surface Fitting: An Introduction', 'year': '1986', 'key': '2024052420505624800_c18'}
/ Curve and Surface Fitting: An Introduction (1986)10.1016/S0009-2614(99)00881-7
/ Chem. Phys. Lett. (1999)10.1080/01442350903234923
/ Int. Rev. Phys. Chem. (2009)10.1103/PhysRevB.87.184115
/ Phys. Rev. B (2013)10.1103/PhysRevLett.114.105503
/ Phys. Rev. Lett. (2015){'volume-title': 'Topological Indices and Related Descriptors in QSAR and QSPR', 'year': '1999', 'author': 'Deviller', 'key': '2024052420505624800_c23'}
/ Topological Indices and Related Descriptors in QSAR and QSPR by Deviller (1999)10.1107/s0108767310026395
/ Acta Crystallogr., Sect. A: Found. Crystallogr. (2010)10.1007/3-540-35273-2_9
/ Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 110.1063/1.469597
/ J. Chem. Phys. (1995)10.1021/jp972209d
/ J. Phys. Chem. A (1998)10.1016/j.cplett.2004.07.076
/ Chem. Phys. Lett. (2004)10.1063/1.2746232
/ J. Chem. Phys. (2007){'key': '2024052420505624800_c30'}
{'key': '2024052420505624800_c31'}
10.1103/PhysRevLett.98.146401
/ Phys. Rev. Lett. (2007)10.1103/PhysRevLett.76.3168
/ Phys. Rev. Lett. (1996)10.1103/PhysRevB.39.5566
/ Phys. Rev. B (1989)10.1088/0953-8984/26/18/183001
/ J. Phys.: Condens. Matter (2014)10.1063/1.3553717
/ J. Chem. Phys. (2011)10.1063/1.4712397
/ J. Chem. Phys. (2012)10.1103/PhysRevLett.104.136403
/ Phys. Rev. Lett. (2010){'key': '2024052420505624800_c39'}
10.1103/PhysRevLett.108.058301
/ Phys. Rev. Lett. (2012)10.1021/acscatal.5b02666
/ ACS Catal. (2016)10.1021/acs.jpclett.5b00831
/ J. Phys. Chem. Lett. (2015)10.1021/jp9105585
/ J. Phys. Chem. A (2010)10.1039/c1cp21668f
/ Phys. Chem. Chem. Phys. (2011)10.1088/0965-0393/7/3/308
/ Modell. Simul. Mater. Sci. Eng. (1999)10.1063/1.2336223
/ J. Chem. Phys. (2006)10.1140/epjb/e2014-50070-0
/ Eur. Phys. J. B (2014)10.1002/qua.24954
/ Int. J. Quantum Chem. (2015)10.1007/BF02478259
/ Bull. Math. Biophys. (1943)10.1021/jp055253z
/ J. Phys. Chem. A (2006)10.1002/qua.24890
/ Int. J. Quantum Chem. (2015)10.1063/1.4825111
/ J. Chem. Phys. (2013)10.1103/PhysRevB.28.784
/ Phys. Rev. B (1983)10.1002/qua.24927
/ Int. J. Quantum Chem. (2015)10.1103/PhysRevLett.114.096405
/ Phys. Rev. Lett. (2015)10.1039/b905748j
/ Phys. Chem. Chem. Phys. (2009){'year': '2013', 'key': '2024052420505624800_c57', 'first-page': '121'}
(2013)10.1039/c1cp00051a
/ Phys. Chem. Chem. Phys. (2011)10.1016/j.jcp.2014.12.018
/ J. Comput. Phys. (2015)10.1007/BF02551274
/ Math. Control, Signals Syst. (1989)10.1016/0893-6080(91)90009-T
/ Neural Networks (1991)10.1039/C6CP00415F
/ Phys. Chem. Chem. Phys. (2016)10.1063/1.4940026
/ J. Chem. Phys. (2016)10.1002/qua.21507
/ Int. J. Quantum Chem. (2007)10.1103/PhysRevB.83.153101
/ Phys. Rev. B (2011)10.1103/PhysRevB.92.045131
/ Phys. Rev. B (2015)10.1038/nmat3078
/ Nat. Mater. (2011)10.1103/PhysRevB.86.104301
/ Phys. Rev. B (2012)10.1073/pnas.1602375113
/ Proc. Natl. Acad. Sci. U. S. A. (2016)10.1021/acs.jpclett.6b01448
/ J. Phys. Chem. Lett. (2016)10.1021/nl5005674
/ Nano Lett. (2014)10.1021/acs.jpclett.5b01456
/ J. Phys. Chem. Lett. (2015)10.1039/C6CP05711J
/ Phys. Chem. Chem. Phys. (2016)
Dates
Type | When |
---|---|
Created | 8 years, 9 months ago (Nov. 1, 2016, 8:30 p.m.) |
Deposited | 1 year, 2 months ago (May 24, 2024, 4:51 p.m.) |
Indexed | 10 hours, 3 minutes ago (Aug. 22, 2025, 12:55 a.m.) |
Issued | 8 years, 9 months ago (Nov. 1, 2016) |
Published | 8 years, 9 months ago (Nov. 1, 2016) |
Published Online | 8 years, 9 months ago (Nov. 1, 2016) |
Published Print | 8 years, 9 months ago (Nov. 7, 2016) |
Funders
1
Deutsche Forschungsgemeinschaft
10.13039/501100001659
Region: Europe
gov (National government)
Labels
3
- German Research Association
- German Research Foundation
- DFG
Awards
2
- Be3264/6-1
- EXC 1069
@article{Behler_2016, title={Perspective: Machine learning potentials for atomistic simulations}, volume={145}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4966192}, DOI={10.1063/1.4966192}, number={17}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Behler, Jörg}, year={2016}, month=nov }