Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

With the help of a Markov State Model (MSM), two-state behaviour is resolved for two computer models of water in a temperature range from 255 K to room temperature (295 K). The method is first validated for ST2 water, for which the so far strongest evidence for a liquid-liquid phase transition exists. In that case, the results from the MSM can be cross-checked against the radial distribution function g5(r) of the 5th-closest water molecule around a given reference water molecule. The latter is a commonly used local order parameter, which exhibits a bimodal distribution just above the liquid-liquid critical point that represents the low-density form of the liquid (LDL) and the high density liquid. The correlation times and correlation lengths of the corresponding spatial domains are calculated and it is shown that they are connected via a simple diffusion model. Once the approach is established, TIP4P/2005 will be considered, which is the much more realistic representation of real water. The MSM can resolve two-state behavior also in that case, albeit with significantly smaller correlation times and lengths. The population of LDL-like water increases with decreasing temperature, thereby explaining the density maximum at 4 °C along the lines of the two-state model of water.

Bibliography

Hamm, P. (2016). Markov state model of the two-state behaviour of water. The Journal of Chemical Physics, 145(13).

Authors 1
  1. Peter Hamm (first)
References 57 Referenced 31
  1. 10.1002/andp.18922810108 / Ann. Phys. Chem. (1892)
  2. 10.1088/0953-8984/15/45/R01 / J. Phys.: Condens. Matter (2003)
  3. 10.1038/360324a0 / Nature (1992)
  4. 10.1038/24540 / Nature (1998)
  5. 10.1038/nature13266 / Nature (2014)
  6. 10.1073/pnas.1311718110 / Proc. Natl. Acad. Sci. U. S. A. (2014)
  7. 10.1063/1.4769126 / J. Chem. Phys. (2012)
  8. 10.1063/1.4775738 / J. Chem. Phys. (2013)
  9. 10.1038/nature13405 / Nature (2014)
  10. 10.1038/nature16540 / Nature (2016)
  11. 10.1063/1.3643333 / J. Chem. Phys. (2011)
  12. 10.1063/1.4807479 / J. Chem. Phys. (2013)
  13. 10.1080/00268976.2015.1029552 / Mol. Phys. (2015)
  14. 10.1038/nature16539 / Nature (2016)
  15. 10.1038/nphys3030 / Nat. Phys. (2014)
  16. 10.1103/PhysRevLett.115.015701 / Phys. Rev. Lett. (2015)
  17. 10.1073/pnas.1408908111 / Proc. Natl. Acad. Sci. U. S. A. (2014)
  18. 10.1073/pnas.0904743106 / Proc. Natl. Acad. Sci. U. S. A. (2009)
  19. 10.1073/pnas.1006599107 / Proc. Natl. Acad. Sci. U. S. A. (2010)
  20. 10.1103/PhysRevLett.106.115706 / Phys. Rev. Lett. (2011)
  21. 10.1140/epje/i2009-10478-6 / Eur. Phys. J. E (2009)
  22. 10.1039/c1cp22076d / Phys. Chem. Chem. Phys. (2011)
  23. 10.1063/1.4737390 / J. Chem. Phys. (2013)
  24. 10.1021/jp984837g / J. Phys. Chem. B (1999)
  25. 10.1063/1.3216567 / J. Chem. Phys. (2009)
  26. 10.1063/1.3565032 / J. Chem. Phys. (2011)
  27. 10.1016/j.ymeth.2010.06.002 / Methods (2010)
  28. 10.1016/j.sbi.2014.04.002 / Curr. Opin. Struct. Biol. (2014)
  29. 10.1063/1.1681229 / J. Chem. Phys. (1974)
  30. 10.1088/0953-8984/17/43/L01 / J. Phys.: Condens Matter (2005)
  31. 10.1063/1.3229892 / J. Chem. Phys. (2009)
  32. 10.1021/jp204889m / J. Phys. Chem. B (2011)
  33. 10.1063/1.4808355 / J. Chem. Phys. (2013)
  34. 10.1021/j100244a057 / J. Chem. Phys. (1983)
  35. 10.1063/1.2121687 / J. Chem. Phys. (2005)
  36. 10.1039/c1cp22168j / Phys. Chem. Chem. Phys. (2011)
  37. 10.1063/1.3506860 / J. Chem. Phys. (2010)
  38. 10.1039/c3ra41320a / RSC Adv. (2013)
  39. 10.1038/ncomms4556 / Nat. Commun. (2014)
  40. 10.1063/1.4944986 / J. Chem. Phys. (2016)
  41. 10.1080/00268978200100281 / Mol. Phys. (1982)
  42. 10.1016/0021-9991(77)90098-5 / J. Comput. Phys. (1977)
  43. 10.1002/jcc.20291 / J. Comput. Chem. (2005)
  44. 10.1107/S0567739476001873 / Acta Crystallogr., Sect. A: Found. Adv. (1976)
  45. 10.1002/jcc.20110 / J. Comput. Chem. (2004)
  46. 10.1063/1.4828704 / J. Chem. Phys. (2013)
  47. {'first-page': '74', 'volume-title': 'Clustering Algorithms', 'year': '1975', 'key': '2023063016280200600_c48'} / Clustering Algorithms (1975)
  48. 10.1021/ct200801b / J. Chem. Theory Comput. (2012)
  49. 10.1103/RevModPhys.35.457 / Rev. Mod. Phys. (1963)
  50. 10.1016/j.chemphys.2005.08.035 / Chem. Phys. (2006)
  51. 10.1073/pnas.1406967111 / Proc. Natl. Acad. Sci. U. S. A. (2014)
  52. 10.1063/1.2742385 / J. Chem. Phys. (2007)
  53. 10.1021/jp1060792 / J. Phys. Chem. B (2010)
  54. 10.1063/1.3594545 / J. Chem. Phys. (2011)
  55. 10.1021/ct5004115 / J. Chem. Theory Comput. (2014)
  56. 10.1073/pnas.0602474103 / Proc. Natl. Acad. Sci. U. S. A. (2006)
  57. 10.1103/PhysRevLett.97.177802 / Phys. Rev. Lett. (2006)
Dates
Type When
Created 8 years, 10 months ago (Oct. 3, 2016, 1:03 p.m.)
Deposited 2 years, 1 month ago (June 30, 2023, 1:05 p.m.)
Indexed 3 weeks, 3 days ago (July 30, 2025, 7:05 a.m.)
Issued 8 years, 10 months ago (Oct. 3, 2016)
Published 8 years, 10 months ago (Oct. 3, 2016)
Published Online 8 years, 10 months ago (Oct. 3, 2016)
Published Print 8 years, 10 months ago (Oct. 7, 2016)
Funders 1
  1. Swiss National Science Foundation 10.13039/501100001711 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels10
    1. Schweizerischer Nationalfonds
    2. Swiss National Science Foundation
    3. Fonds National Suisse de la Recherche Scientifique
    4. Fondo Nazionale Svizzero per la Ricerca Scientifica
    5. Fonds National Suisse
    6. Fondo Nazionale Svizzero
    7. Schweizerische Nationalfonds
    8. SNF
    9. SNSF
    10. FNS
    Awards1
    1. NCCR MUST

@article{Hamm_2016, title={Markov state model of the two-state behaviour of water}, volume={145}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4963305}, DOI={10.1063/1.4963305}, number={13}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Hamm, Peter}, year={2016}, month=oct }