Abstract
We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ∼105 V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.
References
65
Referenced
14
10.1103/RevModPhys.78.973
/ Rev. Mod. Phys. (2006)10.1088/1468-6996/10/2/024314
/ Sci. Technol. Adv. Mater. (2009)10.1103/PhysRevLett.95.226601
/ Phys. Rev. Lett. (2005)10.1038/nmat2825
/ Nat. Mater. (2010)10.1063/1.1539090
/ J. Chem. Phys. (2003)10.1103/PhysRevLett.97.256603
/ Phys. Rev. Lett. (2006)10.1063/1.437982
/ J. Chem. Phys. (1979)10.1103/RevModPhys.60.781
/ Rev. Mod. Phys. (1988)10.1103/PhysRevLett.96.086601
/ Phys. Rev. Lett. (2006)10.1002/adfm.201502386
/ Adv. Func. Mater. / The transient localization scenario for charge transport in crystalline organic materials10.1002/adma.200700550
/ Adv. Mater. (2007)10.1103/PhysRevB.34.3625
/ Phys. Rev. B (1986)10.1103/PhysRevB.37.6622
/ Phys. Rev. B (1988)10.1063/1.4733675
/ J. Chem. Phys. (2012){'first-page': '275', 'volume-title': 'Density Matrix Theory and Applications', 'year': '1996', 'key': '2023062600302058600_c15'}
/ Density Matrix Theory and Applications (1996)10.1063/1.1856460
/ J. Chem. Phys. (2005)10.1103/PhysRevB.83.081202
/ Phys. Rev. B (2011)10.1103/PhysRevLett.85.812
/ Phys. Rev. Lett. (2000)10.1103/PhysRevLett.115.073001
/ Phys. Rev. Lett. (2015)10.1063/1.4757762
/ J. Chem. Phys. (2012)10.1063/1.4875702
/ J. Chem. Phys. (2014)10.1063/1.459170
/ J. Chem. Phys. (1990)10.1021/jz400871j
/ J. Phys. Chem. Lett. (2013)10.1063/1.4926534
/ J. Chem. Phys. (2015)10.1063/1.4729310
/ J. Chem. Phys. (2012)10.1021/jacs.5b04253
/ J. Am. Chem. Soc. (2015)10.1038/srep07227
/ Sci. Rep. (2014)10.1088/1367-2630/6/1/002
/ New J. Phys. (2004)10.1103/PhysRevB.83.134301
/ Phys. Rev. B (2011)10.1103/PhysRevLett.109.236402
/ Phys. Rev. Lett. (2012)10.1103/PhysRevB.88.035132
/ Phys. Rev. B (2013)10.1103/RevModPhys.55.645
/ Rev. Mod. Phys. (1983)10.1103/PhysRevLett.83.836
/ Phys. Rev. Lett. (1999)10.1103/PhysRevB.36.2578
/ Phys. Rev. B (1987)10.1103/PhysRevB.36.2530
/ Phys. Rev. B (1987)10.1103/PhysRevB.65.195301
/ Phys. Rev. B (2002)10.1103/PhysRevB.72.195304
/ Phys. Rev. B (2005)10.1088/0953-8984/26/25/255504
/ J. Phys.: Condens. Matter (2014)10.1103/PhysRevB.69.012201
/ Phys. Rev. B (2004)10.1088/1367-2630/15/7/075017
/ New J. Phys. (2013)10.1103/PhysRev.120.745
/ Phys. Rev. (1960)10.1002/pssb.2221750102
/ Phys. Status Solidi B (1993)10.1063/1.4757100
/ J. Chem. Phys. (2012)10.1063/1.1742979
/ J. Chem. Phys. (2004)10.1021/nn900584p
/ ACS Nano (2009)10.1088/0953-8984/20/23/235203
/ J. Phys.: Condens. Matter (2008)10.1063/1.465409
/ J. Chem. Phys. (1993)10.1063/1.2131056
/ J. Chem. Phys. (2005)10.1063/1.1648306
/ J. Chem. Phys. (2004)10.1063/1.4817856
/ J. Chem. Phys. (2013)10.1021/ja0175892
/ J. Am. Chem. Soc. (2002)10.1103/PhysRevLett.70.3319
/ Phys. Rev. Lett. (1993)10.1103/PhysRevLett.76.4508
/ Phys. Rev. Lett. (1996)10.1103/PhysRevA.41.2295
/ Phys. Rev. A (1990)10.1002/pssa.200982687
/ Phys. Status Solidi A (2010)10.1143/JPSJ.59.2893
/ J. Phys. Soc. Jpn. (1990)10.1143/JPSJ.65.1317
/ J. Phys. Soc. Jpn. (1996)10.1063/1.94640
/ App. Phys. Lett. (1984)10.1063/1.4862889
/ Appl. Phys. Lett. (2014)10.1063/1.4733293
/ Appl. Phys. Lett. (2012)10.1103/PhysRevB.32.1172
/ Phys. Rev. B (1985)10.1021/jz9002857
/ J. Phys. Chem. Lett. (2010)10.1063/1.1704874
/ Appl. Phys. Lett. (2004)10.1103/PhysRevLett.114.086601
/ Phys. Rev. Lett. (2015)10.1103/PhysRevB.75.235106
/ Phys. Rev. B (2007)
Dates
Type | When |
---|---|
Created | 9 years, 4 months ago (April 14, 2016, 8:30 p.m.) |
Deposited | 2 years, 2 months ago (June 25, 2023, 8:30 p.m.) |
Indexed | 4 weeks ago (July 30, 2025, 7:07 a.m.) |
Issued | 9 years, 4 months ago (April 14, 2016) |
Published | 9 years, 4 months ago (April 14, 2016) |
Published Online | 9 years, 4 months ago (April 14, 2016) |
Published Print | 9 years, 4 months ago (April 14, 2016) |
Funders
2
the national basic research program of China
Awards
1
- 2012CB921402
National Natural Science Foundation of China
10.13039/501100001809
Region: Asia
gov (National government)
Labels
11
- Chinese National Science Foundation
- Natural Science Foundation of China
- National Science Foundation of China
- NNSF of China
- NSF of China
- 国家自然科学基金委员会
- National Nature Science Foundation of China
- Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
- NSFC
- NNSF
- NNSFC
Awards
1
- 11574050
@article{Dong_2016, title={Drift of charge carriers in crystalline organic semiconductors}, volume={144}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4945778}, DOI={10.1063/1.4945778}, number={14}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Dong, Jingjuan and Si, Wei and Wu, Chang-Qin}, year={2016}, month=apr }