Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

Bibliography

Brecht, T., Reagor, M., Chu, Y., Pfaff, W., Wang, C., Frunzio, L., Devoret, M. H., & Schoelkopf, R. J. (2015). Demonstration of superconducting micromachined cavities. Applied Physics Letters, 107(19).

Authors 8
  1. T. Brecht (first)
  2. M. Reagor (additional)
  3. Y. Chu (additional)
  4. W. Pfaff (additional)
  5. C. Wang (additional)
  6. L. Frunzio (additional)
  7. M. H. Devoret (additional)
  8. R. J. Schoelkopf (additional)
References 23 Referenced 46
  1. 10.1109/6668.918260 / IEEE Microwave Mag. (2001)
  2. T. Brecht, W. Pfaff, Y. Chu, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf, e-print arXiv:1509.01127.
  3. {'key': '2023061720064655000_c3'}
  4. L. Harle, “Microwave micromachined cavity filters,” Ph.D. thesis (University of Michigan, 2003).
  5. 10.1002/(SICI)1099-047X(199907)9:4>326::AID-MMCE4<3.0.CO;2-Y / Int. J. RF Microwave Comput. Aided Eng. (1999)
  6. 10.1103/PhysRevLett.107.240501 / Phys. Rev. Lett. (2011)
  7. 10.1146/annurev-conmatphys-020911-125022 / Annu. Rev. Condens. Matter Phys. (2012)
  8. 10.1063/1.4710520 / Appl. Phys. Lett. (2012)
  9. 10.1016/j.nima.2005.12.075 / Nucl. Instrum. Methods Phys. Res., Sect. A (2006)
  10. 10.1063/1.3637047 / Appl. Phys. Lett. (2011)
  11. 10.1063/1.4807015 / Appl. Phys. Lett. (2013)
  12. 10.1103/PhysRevSTAB.14.050702 / Phys. Rev. Spec. Top.-Accel. Beams (2011)
  13. 10.1049/pi-b-1.1955.0095 / Proc. IEE - Part B (1955)
  14. 10.1109/MWSYM.2001.967009 / IEEE MTT-S (2001)
  15. 10.1063/1.2724816 / Appl. Phys. Lett. (2007)
  16. 10.1063/1.1656986 / J. Appl. Phys. (1968)
  17. M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou et al., e-print arXiv:1508.05882v2.
  18. 10.1016/0025-5416(88)90578-2 / Mater. Sci. Eng. A (1988)
  19. 10.1063/1.3692073 / J. Appl. Phys. (2012)
  20. See supplementary material at http://dx.doi.org/10.1063/1.4935541 for details of machined cavity constructions, fabrication methods for micromachined cavities, and additional measurements of micromachined cavities with planar coupling.
  21. 10.1088/1674-4926/31/11/116004 / J. Semicond. (2010)
  22. 10.1016/j.nima.2006.05.011 / Nucl. Instrum. Methods Phys. Res., Sect. A (2006)
  23. 10.1117/12.926491 / Proc. SPIE (2012)
Dates
Type When
Created 9 years, 9 months ago (Nov. 12, 2015, 1 p.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 4:06 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 8:03 a.m.)
Issued 9 years, 9 months ago (Nov. 9, 2015)
Published 9 years, 9 months ago (Nov. 9, 2015)
Published Online 9 years, 9 months ago (Nov. 12, 2015)
Published Print 9 years, 9 months ago (Nov. 9, 2015)
Funders 3
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. PHY1309996
  2. Army Research Office 10.13039/100000183

    Region: Americas

    gov (National government)

    Labels5
    1. U.S. Army Research Office
    2. United States Army Research Office
    3. U.S. Army Research Laboratory's Army Research Office
    4. ARL's Army Research Office
    5. ARO
    Awards1
    1. W911NF-14-1-0011
  3. Alexander von Humboldt-Stiftung 10.13039/100005156

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels5
    1. Humboldt-Stiftung
    2. Humboldt Foundation
    3. Alexander von Humboldt Foundation
    4. Humboldt Stiftung
    5. AvH

@article{Brecht_2015, title={Demonstration of superconducting micromachined cavities}, volume={107}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4935541}, DOI={10.1063/1.4935541}, number={19}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Brecht, T. and Reagor, M. and Chu, Y. and Pfaff, W. and Wang, C. and Frunzio, L. and Devoret, M. H. and Schoelkopf, R. J.}, year={2015}, month=nov }