Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M=Sn or Ge, X=Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique “puckered” C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

Bibliography

Fei, R., Li, W., Li, J., & Yang, L. (2015). Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Applied Physics Letters, 107(17).

Authors 4
  1. Ruixiang Fei (first)
  2. Wenbin Li (additional)
  3. Ju Li (additional)
  4. Li Yang (additional)
References 54 Referenced 661
  1. {'year': '2011', 'key': '2023061716265991900_c1'} (2011)
  2. 10.1088/0964-1726/17/4/043001 / Smart Mater. Struct. (2008)
  3. 10.1038/nmat1334 / Nat. Mater. (2005)
  4. 10.1038/ncomms1098 / Nat. Commun. (2010)
  5. 10.1038/nnano.2012.112 / Nat. Nanotechnol. (2012)
  6. 10.1088/0964-1726/16/3/R01 / Smart Mater. Struct. (2007)
  7. 10.1103/PhysRevLett.79.3958 / Phys. Rev. Lett. (1997)
  8. 10.1063/1.125560 / Appl. Phys. Lett. (1999)
  9. 10.1002/adma.201104365 / Adv. Mater. (2012)
  10. 10.1126/science.1124005 / Science (2006)
  11. 10.1038/nphoton.2013.191 / Nat. Photonics (2013)
  12. 10.1021/nl061802g / Nano Lett. (2006)
  13. 10.1038/nnano.2010.46 / Nat. Nanotechnol. (2010)
  14. 10.1021/jz3012436 / J. Phys. Chem. Lett. (2012)
  15. 10.1103/PhysRevB.80.224301 / Phys. Rev. B (2009)
  16. W. Li and J. Li, “Piezoelectricity in two-dimensional group III monochalcogenides,” preprint arXiv:150307379 (2015). (10.1007/s12274-015-0878-8)
  17. 10.1063/1.4890385 / Appl. Phys. Lett. (2014)
  18. 10.1021/acsnano.5b03394 / ACS Nano
  19. 10.1021/cm401661x / Chem. Mater. (2013)
  20. 10.1021/nn204198g / ACS Nano (2012)
  21. 10.1063/1.4861659 / Appl. Phys. Lett. (2014)
  22. 10.1038/nature13792 / Nature (2014)
  23. 10.1038/nnano.2014.309 / Nat. Nanotechnol. (2015)
  24. 10.1038/ncomms8430 / Nat. Commun. (2015)
  25. 10.1021/ja3108017 / J. Am. Chem. Soc. (2013)
  26. 10.1103/PhysRevLett.77.3865 / Phys. Rev. Lett. (1996)
  27. 10.1016/0927-0256(96)00008-0 / Comput. Mater. Sci. (1996)
  28. 10.1103/PhysRevB.54.11169 / Phys. Rev. B (1996)
  29. 10.1103/PhysRevB.50.17953 / Phys. Rev. B (1994)
  30. 10.1103/PhysRevB.47.1651 / Phys. Rev. B (1993)
  31. {'first-page': '31', 'volume-title': 'Physics of Ferroelectrics: a Modern Perspective', 'year': '2007', 'key': '2023061716265991900_c31'} / Physics of Ferroelectrics: a Modern Perspective (2007)
  32. 10.1016/S0022-3697(99)00273-5 / J. Phys. Chem. Solids (2000)
  33. 10.1103/PhysRevB.16.832 / Phys. Rev. B (1977)
  34. 10.1021/ja107520b / J. Am. Chem. Soc. (2010)
  35. 10.1002/pssb.2221050131 / Phys. Status Solidi B (1981)
  36. 10.1088/0022-3719/15/7/013 / J. Phys. C Solid State Phys. (1982)
  37. 10.1524/zkri.1978.148.3-4.295 / Z. Kristallogr. (1978)
  38. 10.1063/1.3675880 / Appl. Phys. Lett. (2012)
  39. 10.1016/j.solmat.2006.06.012 / Sol. Energy Mater. Sol. Cells (2006)
  40. 10.1038/nature13184 / Nature (2014)
  41. 10.1103/PhysRevB.58.1896 / Phys. Rev. B (1998)
  42. 10.1103/PhysRevB.92.085406 / Phys. Rev. B (2015)
  43. L. C. Zhang, G. Qin, W. Z. Fang, H. J. Cui, Q. R. Zheng, Q. B. Yang, and G. Su, “SnSe monolayer: Super-flexible, auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility,” preprint arXiv:1505.04590 (2015). (10.1038/srep19830)
  44. See supplementary material at http://dx.doi.org/10.1063/1.4934750 for band structure of intrinsic GeS, GeSe, SnS, and SnSe.
  45. 10.1103/PhysRevB.89.235319 / Phys. Rev. B (2014)
  46. 10.1063/1.4816517 / Appl. Phys. Lett. (2013)
  47. 10.1021/ja100249m / J. Am. Chem. Soc. (2010)
  48. 10.1143/JJAP.45.L358 / Jpn. J. Appl. Phys., Part 2 (2006)
  49. 10.1103/PhysRevB.56.R10024 / Phys. Rev. B (1997)
  50. 10.1021/acsnano.5b02742 / ACS Nano (2015)
  51. 10.1038/ncomms5727 / Nat. Commun. (2014)
  52. 10.1021/nl035198a / Nano Lett. (2004)
  53. 10.1103/PhysRev.110.1060 / Phys. Rev. (1958)
  54. 10.1063/1.1317244 / J. Appl. Phys. (2000)
Dates
Type When
Created 9 years, 10 months ago (Oct. 27, 2015, 6:22 p.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 12:27 p.m.)
Indexed 17 hours, 16 minutes ago (Sept. 3, 2025, 6:23 a.m.)
Issued 9 years, 10 months ago (Oct. 26, 2015)
Published 9 years, 10 months ago (Oct. 26, 2015)
Published Online 9 years, 10 months ago (Oct. 27, 2015)
Published Print 9 years, 10 months ago (Oct. 26, 2015)
Funders 1
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards4
    1. DMR-1207141
    2. DMR-1410636
    3. DMR-1455346
    4. DMR-1120901

@article{Fei_2015, title={Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS}, volume={107}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4934750}, DOI={10.1063/1.4934750}, number={17}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Fei, Ruixiang and Li, Wenbin and Li, Ju and Yang, Li}, year={2015}, month=oct }