Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

We report the effect of epitaxial strain on the magnitude and retention of the ferroelectric field effect in high quality PbZr0.3Ti0.7O3 (PZT)/3.8–4.3 nm Sm0.5Nd0.5NiO3 (SNNO) heterostructures grown on (001) LaAlO3 (LAO) and SrTiO3 (STO) substrates. For SNNO on LAO, which exhibits a first-order metal-insulator transition (MIT), switching the polarization of PZT induces a 10 K shift in the transition temperature TMI, with a maximum resistance change between the on and off states of ΔR/Ron ∼75%. In sharp contrast, only up to 5% resistance change has been induced in SNNO on STO, where the MIT is second-order, with the modulation of TMI negligibly small. We also observe thermally activated retention of the off state resistance Roff in both systems, with the activation energy of 22 meV (28 meV) for devices on LAO (STO). The time dynamics and thermal response of the field effect instability points to phonon-assisted interfacial trapping of charged mobile defects, which are attributed to strain induced oxygen vacancies. At room temperature, Roff stabilizes at ∼55% and ∼19% of the initial switching levels for SNNO on LAO and STO, respectively, reflecting the significantly different oxygen vacancy densities in these two systems. Our results reveal the critical role of strain in engineering and modeling the complex oxide composite structures for nanoelectronic and spintronic applications.

Authors 6
  1. L. Zhang (first)
  2. X. G. Chen (additional)
  3. H. J. Gardner (additional)
  4. M. A. Koten (additional)
  5. J. E. Shield (additional)
  6. X. Hong (additional)
References 37 Referenced 20
  1. 10.1103/RevModPhys.78.1185 / Rev. Mod. Phys. (2006)
  2. 10.1146/annurev-matsci-070813-113315 / Annu. Rev. Mater. Res. (2014)
  3. 10.1063/1.113362 / Appl. Phys. Lett. (1995)
  4. 10.1126/science.284.5417.1152 / Science (1999)
  5. 10.1103/PhysRevLett.98.057002 / Phys. Rev. Lett. (2007)
  6. 10.1103/PhysRevLett.86.5998 / Phys. Rev. Lett. (2001)
  7. 10.1103/PhysRevB.68.134415 / Phys. Rev. B (2003)
  8. 10.1063/1.1897076 / Appl. Phys. Lett. (2005)
  9. 10.1103/PhysRevB.74.174406 / Phys. Rev. B (2006)
  10. 10.1002/adma.200900278 / Adv. Mater. (2009)
  11. 10.1103/PhysRevLett.104.127202 / Phys. Rev. Lett. (2010)
  12. 10.1063/1.4726427 / Appl. Phys. Lett. (2012)
  13. 10.1063/1.4870507 / Appl. Phys. Lett. (2014)
  14. 10.1038/nmat4058 / Nat. Mater. (2014)
  15. 10.1088/0957-4484/22/25/254014 / Nanotechnology (2011)
  16. 10.1038/srep02834 / Sci. Rep. (2013)
  17. 10.1103/PhysRevApplied.2.051001 / Phys. Rev. Appl. (2014)
  18. 10.1006/jssc.1995.1391 / J. Solid State Chem. (1995)
  19. 10.1088/0953-8984/27/13/132201 / J. Phys.: Condens. Matter (2015)
  20. 10.1080/10584580215437 / Integr. Ferroelectr. (2002)
  21. 10.1103/RevModPhys.77.1083 / Rev. Mod. Phys. (2005)
  22. 10.1103/PhysRevB.61.4401 / Phys. Rev. B (2000)
  23. 10.1080/01411590801992463 / Phase Transitions (2008)
  24. 10.1002/adma.201003241 / Adv. Mater. (2010)
  25. 10.1063/1.4812716 / AIP Adv. (2013)
  26. 10.1063/1.4858455 / J. Appl. Phys. (2013)
  27. 10.1063/1.4902138 / APL Mater. (2014)
  28. 10.1063/1.2938845 / J. Appl. Phys. (2008)
  29. 10.1063/1.1541116 / Appl. Phys. Lett. (2003)
  30. 10.1063/1.4820431 / APL Mater. (2013)
  31. {'volume-title': 'Electronic Properties of Doped Semiconductors', 'year': '1984', 'key': '2023061718362663200_c31'} / Electronic Properties of Doped Semiconductors (1984)
  32. 10.1103/PhysRevLett.59.1037 / Phys. Rev. Lett. (1987)
  33. 10.1063/1.881289 / Phys. Today (1991)
  34. 10.1063/1.358704 / J. Appl. Phys. (1995)
  35. 10.1063/1.1852069 / J. Appl. Phys. (2005)
  36. 10.1016/S0038-1098(98)00515-8 / Solid State Commun. (1998)
  37. 10.1103/PhysRevB.88.054111 / Phys. Rev. B (2013)
Dates
Type When
Created 9 years, 10 months ago (Oct. 16, 2015, 5:31 p.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 2:36 p.m.)
Indexed 4 weeks, 2 days ago (Aug. 2, 2025, 12:43 a.m.)
Issued 9 years, 10 months ago (Oct. 12, 2015)
Published 9 years, 10 months ago (Oct. 12, 2015)
Published Online 9 years, 10 months ago (Oct. 16, 2015)
Published Print 9 years, 10 months ago (Oct. 12, 2015)
Funders 3
  1. Nebraska Research Initiative
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards3
    1. MRSEC DMR-1420645
    2. DMR-1148783
    3. DMR-1409622
  3. Semiconductor Research Corporation 10.13039/100000028

    Region: Americas

    pri (For-profit companies (industry))

    Labels2
    1. Semiconductor Research Corp.
    2. SRC
    Awards1
    1. Center for NanoFerroic Devices and NRI

@article{Zhang_2015, title={Effect of strain on ferroelectric field effect in strongly correlated oxide Sm0.5Nd0.5NiO3}, volume={107}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4934182}, DOI={10.1063/1.4934182}, number={15}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Zhang, L. and Chen, X. G. and Gardner, H. J. and Koten, M. A. and Shield, J. E. and Hong, X.}, year={2015}, month=oct }