Abstract
Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.
References
31
Referenced
22
10.1038/nmat1849
/ Nat. Mater. (2007)10.1021/jp1115146
/ J. Phys. Chem. C (2011)10.1038/nnano.2010.279
/ Nat. Nanotechnol. (2011)10.1021/nl903868w
/ Nano Lett. (2010)10.1103/PhysRevLett.105.136805
/ Phys. Rev. Lett. (2010)10.1126/science.1157996
/ Science (2008)10.1021/nn203879f
/ ACS Nano (2011)10.1063/1.4823509
/ Appl. Phys. Lett. (2013)10.1021/ja201269b
/ J. Am. Chem. Soc. (2011)10.1103/PhysRevB.79.115409
/ Phys. Rev. B (2009)10.1038/ncomms1882
/ Nat. Commun. (2012)10.1103/PhysRevB.77.235406
/ Phys. Rev. B (2008)10.1038/nnano.2012.95
/ Nat. Nanotechnol. (2012)10.1002/adma.201104798
/ Adv. Mater. (2012)10.1038/nmat3633
/ Nat. Mater. (2013)10.1126/science.1218948
/ Science (2012)10.1126/science.1196893
/ Science (2010)10.1038/nature09718
/ Nature (2011)10.1126/science.1235126
/ Science (2013)10.1038/nmat3673
/ Nat. Mater. (2013)10.1063/1.3337091
/ Appl. Phys. Lett. (2010)10.1021/nn901585p
/ ACS Nano (2010)10.1038/nature07719
/ Nature (2009)10.1038/nature11562
/ Nature (2012)10.1126/science.1250564
/ Science (2014)10.1021/ac300936q
/ Anal. Chem. (2012)10.1103/PhysRevB.87.161403
/ Phys. Rev. B (2013)10.1021/nl401561r
/ Nano Lett. (2013)10.1103/PhysRevB.80.075110
/ Phys. Rev. B (2009)10.1038/ncomms6246
/ Nat. Commun. (2014)10.1103/PhysRevLett.54.63
/ Phys. Rev. Lett. (1985)
Dates
Type | When |
---|---|
Created | 9 years, 11 months ago (Sept. 18, 2015, 1:36 a.m.) |
Deposited | 2 years, 2 months ago (June 17, 2023, 10:50 p.m.) |
Indexed | 1 month ago (July 30, 2025, 7:05 a.m.) |
Issued | 9 years, 11 months ago (Sept. 14, 2015) |
Published | 9 years, 11 months ago (Sept. 14, 2015) |
Published Online | 9 years, 11 months ago (Sept. 17, 2015) |
Published Print | 9 years, 11 months ago (Sept. 14, 2015) |
@article{David_2015, title={Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers}, volume={107}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4930232}, DOI={10.1063/1.4930232}, number={11}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={David, Sabrina N. and Zhai, Yao and van der Zande, Arend M. and O’Brien, Kevin and Huang, Pinshane Y. and Chenet, Daniel A. and Hone, James C. and Zhang, Xiang and Yin, Xiaobo}, year={2015}, month=sep }