Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

A wide variety of physical systems respond to changing external conditions through discrete impulsive events called jerks, typically leading to collective “crackling noise” behaviour. Statistical distributions of jerky events often exhibit a universal scale-invariant power law, regardless of the specific mechanisms that are responsible for crackling noise processes and microstructural features that affect them. Here, we analyse uniaxial compression loading curves of two different physical systems that exhibit jerky behaviour: a martensitic NiMnGa single crystal and a stack of corrugated fiberboards. The jerky response is attributed to a non-uniform twin boundary motion along the NiMnGa crystal and to a local buckling of individual fiberboard layers. In both cases, our analysis reveals that different variables exhibit different statistical distributions. While the velocity of temporal processes within jerky events exhibits scale invariant distribution, the irreversible displacements induced throughout complete events are distributed around a characteristic value. In the case of NiMnGa, the displacement of a twin boundary is directly related to the length-scale of the internal magneto-mechanical microstructure. Similarly, the displacement of the fiberboard stack corresponds to the thickness of individual board layers. These observations reveal the effect of the internal microstructure on crackling noise systems and demonstrate an analysis approach for uncovering the details of the jerk mechanism.

Bibliography

Faran, E., Salje, E. K. H., & Shilo, D. (2015). The exploration of the effect of microstructure on crackling noise systems. Applied Physics Letters, 107(7).

Authors 3
  1. Eilon Faran (first)
  2. Ekhard K. H. Salje (additional)
  3. Doron Shilo (additional)
References 33 Referenced 25
  1. 10.1146/annurev-conmatphys-031113-133838 / Annu. Rev. Condens. Matter Phys. (2014)
  2. 10.1038/35065675 / Nature (2001)
  3. 10.1038/nphys682 / Nat. Phys. (2007)
  4. 10.1103/PhysRevLett.110.088702 / Phys. Rev. Lett. (2013)
  5. 10.1080/09500839.2011.596491 / Philos. Mag. Lett. (2011)
  6. 10.1088/0953-8984/25/29/292202 / J. Phys.: Condens. Matter (2013)
  7. 10.1103/PhysRevLett.72.1694 / Phys. Rev. Lett. (1994)
  8. 10.1063/1.3609239 / Appl. Phys. Lett. (2011)
  9. 10.1103/PhysRevB.81.174102 / Phys. Rev. B (2010)
  10. 10.1103/PhysRevLett.112.155501 / Phys. Rev. Lett. (2014)
  11. 10.1126/science.1143719 / Science (2007)
  12. 10.1103/PhysRevE.67.041304 / Phys. Rev. E (2003)
  13. 10.1103/PhysRevLett.109.095507 / Phys. Rev. Lett. (2012)
  14. 10.1137/070710111 / SIAM Rev. (2009)
  15. 10.1007/s100510050276 / Eur. Phys. J. B (1998)
  16. 10.1063/1.117637 / Appl. Phys. Lett. (1996)
  17. 10.1016/S0375-9601(00)00561-2 / Phys. Lett. A (2000)
  18. 10.1063/1.3702459 / Appl. Phys. Lett. (2012)
  19. 10.1016/j.actamat.2012.12.012 / Acta Mater. (2013)
  20. 10.1016/j.jmps.2013.11.004 / J. Mech. Phys. Solids (2014)
  21. 10.1063/1.3292205 / Appl. Phys. Lett. (2010)
  22. 10.1063/1.2737934 / Appl. Phys. Lett. (2007)
  23. 10.1103/PhysRevLett.104.155501 / Phys. Rev. Lett. (2010)
  24. 10.1016/j.jmps.2011.02.009 / J. Mech. Phys. Solids (2011)
  25. 10.1016/j.jmps.2012.11.004 / J. Mech. Phys. Solids (2013)
  26. 10.1179/1743284714Y.0000000570 / Mater. Sci. Technol. (2014)
  27. 10.1103/PhysRevB.87.094109 / Phys. Rev. B (2013)
  28. 10.1088/0953-8984/26/14/142201 / J. Phys.: Condens. Matter (2014)
  29. 10.1103/PhysRevB.83.104109 / Phys. Rev. B (2011)
  30. 10.1103/PhysRevB.86.214101 / Phys. Rev. B (2012)
  31. 10.2320/matertrans.47.631 / Mater. Trans. (2006)
  32. 10.1103/PhysRevB.88.174108 / Phys. Rev. B (2013)
  33. 10.1103/PhysRevB.89.214118 / Phys. Rev. B (2014)
Dates
Type When
Created 10 years ago (Aug. 17, 2015, 1 p.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 1:18 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 6, 2025, 8:35 a.m.)
Issued 10 years ago (Aug. 17, 2015)
Published 10 years ago (Aug. 17, 2015)
Published Online 10 years ago (Aug. 17, 2015)
Published Print 10 years ago (Aug. 17, 2015)
Funders 1
  1. Israel Science Foundation 10.13039/501100003977

    Region: Asia

    pri (Other non-profit organizations)

    Labels3
    1. The Israel Science Foundation
    2. הקרן הלאומית למדע
    3. ISF
    Awards2
    1. 1268/14
    2. 1341/10

@article{Faran_2015, title={The exploration of the effect of microstructure on crackling noise systems}, volume={107}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4928928}, DOI={10.1063/1.4928928}, number={7}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Faran, Eilon and Salje, Ekhard K. H. and Shilo, Doron}, year={2015}, month=aug }