Abstract
The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.
Authors
6
- Alexandre J. Haemmerli (first)
- Nahid Harjee (additional)
- Markus Koenig (additional)
- Andrei G. F. Garcia (additional)
- David Goldhaber-Gordon (additional)
- Beth L. Pruitt (additional)
References
52
Referenced
4
10.1063/1.117801
/ Appl. Phys. Lett. (1996)10.1126/science.289.5488.2323
/ Science (2000)10.1038/35065553
/ Nature (2001)10.1038/nphys756
/ Nat. Phys. (2007)10.1038/nmat1516
/ Nat. Mater. (2005)10.1088/0957-4484/18/47/475712
/ Nanotechnology (2007)10.1103/PhysRevLett.89.216801
/ Phys. Rev. Lett. (2002)10.1126/science.291.5502.283
/ Science (2001)10.1103/PhysRevLett.84.6082
/ Phys. Rev. Lett. (2000)10.1016/0030-4018(89)90103-X
/ Opt. Commun. (1989)10.1016/0304-3991(92)90298-X
/ Ultramicroscopy (1992)10.1016/1350-4495(94)00066-T
/ Infrared Phys. Technol. (1995)10.1063/1.114223
/ Appl. Phys. Lett. (1995)10.1063/1.116520
/ Appl. Phys. Lett. (1996)10.1088/0957-4484/10/1/012
/ Nanotechnology (1999)10.1046/j.1365-2818.1999.00538.x
/ J. Microsc. (1999)10.1116/1.1371018
/ J. Vac. Sci. Technol., B (2001)10.1063/1.2168247
/ Appl. Phys. Lett. (2006)10.1088/0957-4484/19/04/045304
/ Nanotechnology (2008)10.1063/1.3372621
/ Appl. Phys. Lett. (2010)10.1063/1.118272
/ Appl. Phys. Lett. (1997)10.1116/1.590348
/ J. Vac. Sci. Technol., B (1998)10.1016/S0924-4247(02)00341-2
/ Sens. Actuators, A (2002)10.1109/TMTT.2004.823596
/ IEEE Trans. Microwave Theory Tech. (2004)10.1063/1.3585670
/ Appl. Phys. Lett. (2011)10.1088/0957-4484/23/11/115703
/ Nanotechnology (2012)10.1021/nl080488i
/ Nano Lett. (2008)10.1088/0960-1317/2/3/026
/ J. Micromech. Microeng. (1992)10.1063/1.1147290
/ Rev. Sci. Instrum. (1996)10.1007/BF00694423
/ Appl. Phys. B: Lasers Opt. (1989)10.1063/1.108593
/ Appl. Phys. Lett. (1993)10.1016/S0304-3991(99)00171-0
/ Ultramicroscopy (2000)10.1063/1.2825466
/ Appl. Phys. Lett. (2008)10.1063/1.116528
/ Appl. Phys. Lett. (1996)10.1063/1.121064
/ Appl. Phys. Lett. (1998)10.1116/1.1327299
/ J. Vac. Sci. Technol., B (2000)10.1063/1.124350
/ Appl. Phys. Lett. (1999)10.1109/84.846703
/ J. Microelectromech. Syst. (2000)10.1063/1.3224965
/ J. Appl. Phys. (2009)10.1109/JMEMS.2009.2036581
/ J. Microelectromech. Syst. (2010)10.1109/JMEMS.2009.2036582
/ J. Microelectromech. Syst. (2010){'year': '2012', 'key': '2023062422340070400_c42'}
(2012){'year': '2013', 'key': '2023062422340070400_c43'}
(2013){'year': '2010', 'key': '2023062422340070400_c44', 'first-page': '344'}
(2010)10.1063/1.1702605
/ J. Appl. Phys. (1963)10.1109/PROC.1969.7325
/ Proc. IEEE (1969)10.1149/1.2133492
/ J. Electrochem. Soc. (1977)10.1016/0038-1101(92)90326-8
/ Solid-State Electron. (1992)10.1063/1.3595485
/ Appl. Phys. Lett. (2011)10.1116/1.585680
/ J. Vac. Sci. Technol., B (1991)10.1038/nphys992
/ Nat. Phys. (2008)10.1126/science.276.5312.579
/ Science (1997)
Dates
Type | When |
---|---|
Created | 10 years, 1 month ago (July 20, 2015, 1 p.m.) |
Deposited | 2 years, 2 months ago (June 25, 2023, 12:20 a.m.) |
Indexed | 3 weeks, 5 days ago (July 30, 2025, 7:05 a.m.) |
Issued | 10 years, 1 month ago (July 20, 2015) |
Published | 10 years, 1 month ago (July 20, 2015) |
Published Online | 10 years, 1 month ago (July 20, 2015) |
Published Print | 10 years, 1 month ago (July 21, 2015) |
Funders
1
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
1
- ECCS-0708031
@article{Haemmerli_2015, title={Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology}, volume={118}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.4923231}, DOI={10.1063/1.4923231}, number={3}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Haemmerli, Alexandre J. and Harjee, Nahid and Koenig, Markus and Garcia, Andrei G. F. and Goldhaber-Gordon, David and Pruitt, Beth L.}, year={2015}, month=jul }