Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

A method is presented for optically preparing WS2 monolayers to luminescence from only the charged exciton (trion) state–completely suppressing the neutral exciton. When isolating the trion state, we observed changes in the Raman A1g intensity and an enhanced feature on the low energy side of the E12g peak. Photoluminescence and optical reflectivity measurements confirm the existence of the prepared trion state. This technique also prepares intermediate regimes with controlled luminescence amplitudes of the neutral and charged exciton. This effect is reversible by exposing the sample to air, indicating the change is mitigated by surface interactions with the ambient environment. This method provides a tool to modify optical emission energy and to isolate physical processes in this and other two-dimensional materials.

Bibliography

Currie, M., Hanbicki, A. T., Kioseoglou, G., & Jonker, B. T. (2015). Optical control of charged exciton states in tungsten disulfide. Applied Physics Letters, 106(20).

Authors 4
  1. M. Currie (first)
  2. A. T. Hanbicki (additional)
  3. G. Kioseoglou (additional)
  4. B. T. Jonker (additional)
References 32 Referenced 79
  1. 10.1038/ncomms6678 / Nat. Commun. (2014)
  2. 10.1038/nnano.2012.193 / Nat. Nanotechnol. (2012)
  3. 10.1021/nn400280c / ACS Nano (2013)
  4. 10.1063/1.3696045 / Appl. Phys. Lett. (2012)
  5. 10.1021/nl3043079 / Nano Lett. (2013)
  6. 10.1038/ncomms4637 / Nat. Commun. (2014)
  7. 10.1103/PhysRevA.90.023837 / Phys. Rev. A (2014)
  8. 10.1038/nmat3505 / Nat. Mater. (2013)
  9. 10.1002/adma.201401084 / Adv. Mater. (2014)
  10. 10.1021/nl4011172 / Nano Lett. (2013)
  11. 10.1021/nl403036h / Nano Lett. (2013)
  12. 10.1021/nn501580c / ACS Nano (2014)
  13. 10.1038/ncomms2498 / Nat. Commun. (2013)
  14. 10.1021/nn500532f / ACS Nano (2014)
  15. 10.1038/srep02657 / Sci. Rep. (2013)
  16. 10.1103/PhysRevB.84.153402 / Phys. Rev. B (2011)
  17. 10.1016/j.ssc.2014.11.005 / Solid State Commun. (2015)
  18. 10.1103/PhysRevLett.113.076802 / Phys. Rev. Lett. (2014)
  19. 10.1021/nl3026357 / Nano Lett. (2013)
  20. 10.1021/nn502362b / ACS Nano (2014)
  21. 10.1103/PhysRevB.88.245403 / Phys. Rev. B (2013)
  22. 10.1063/1.104723 / Appl. Phys. Lett. (1991)
  23. 10.1103/PhysRevB.84.155413 / Phys. Rev. B (2011)
  24. 10.1038/srep01755 / Sci. Rep. (2013)
  25. 10.1103/PhysRevB.33.5512 / Phys. Rev. B (1986)
  26. 10.1007/BF01730729 / J. Mater. Sci. Lett. (1988)
  27. 10.1021/nn500277y / ACS Nano (2014)
  28. 10.1016/0301-0104(91)80136-6 / Chem. Phys. (1991)
  29. 10.1038/srep04215 / Sci. Rep. (2014)
  30. 10.1039/c3nr03052k / Nanoscale (2013)
  31. 10.1103/PhysRevLett.45.298 / Phys. Rev. Lett. (1980)
  32. 10.1063/PT.3.2419 / Phys. Today (2014)
Dates
Type When
Created 10 years, 3 months ago (May 20, 2015, 1:06 p.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 9:27 p.m.)
Indexed 1 day, 14 hours ago (Aug. 30, 2025, 12:27 p.m.)
Issued 10 years, 3 months ago (May 18, 2015)
Published 10 years, 3 months ago (May 18, 2015)
Published Online 10 years, 3 months ago (May 20, 2015)
Published Print 10 years, 3 months ago (May 18, 2015)
Funders 1
  1. Office of Naval Research 10.13039/100000006

    Region: Americas

    gov (National government)

    Labels6
    1. U.S. Office of Naval Research
    2. Naval Research
    3. United States Office of Naval Research
    4. U.S. Department of the Navy Office of Naval Research
    5. The Office of Naval Research
    6. ONR

@article{Currie_2015, title={Optical control of charged exciton states in tungsten disulfide}, volume={106}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4921472}, DOI={10.1063/1.4921472}, number={20}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Currie, M. and Hanbicki, A. T. and Kioseoglou, G. and Jonker, B. T.}, year={2015}, month=may }