Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

Thermal phonon transport in silicon nanowires (Si NWs) and two-dimensional phononic crystal (2D PnC) nanostructures was investigated by measuring thermal conductivity using a micrometer-scale time-domain thermoreflectance. The impact of nanopatterning on thermal conductivity strongly depends on the geometry, specularity parameter, and thermal phonon mean free path (MFP) distribution. Thermal conductivities for 2D PnC nanostructures were found to be much lower than that for NWs with similar characteristic length and surface-to-volume ratio due to stronger phonon back scattering. In single-crystalline Si, PnC patterning has a stronger impact at 4 K than at room temperature due to a higher specularity parameter and a longer thermal phonon MFP. Nanowire patterning has a stronger impact in polycrystalline Si, where thermal phonon MFP distribution is biased longer by grain boundary scattering.

Bibliography

Nomura, M., Nakagawa, J., Kage, Y., Maire, J., Moser, D., & Paul, O. (2015). Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures. Applied Physics Letters, 106(14).

Authors 6
  1. Masahiro Nomura (first)
  2. Junki Nakagawa (additional)
  3. Yuta Kage (additional)
  4. Jeremie Maire (additional)
  5. Dominik Moser (additional)
  6. Oliver Paul (additional)
References 22 Referenced 62
  1. 10.1115/1.4023577 / J. Heat Transfer (2013)
  2. 10.1002/adma.201000839 / Adv. Mater. (2010)
  3. 10.1088/0957-0233/20/1/012002 / Meas. Sci. Technol. (2009)
  4. 10.1080/15567265.2012.667514 / Nanoscale Microscale Thermophys. Eng. (2012)
  5. 10.1038/nature06381 / Nature (2008)
  6. 10.1063/1.4816590 / Appl. Phys. Lett. (2013)
  7. 10.1063/1.3517158 / J. Appl. Phys. (2010)
  8. 10.1038/srep06399 / Sci. Rep. (2014)
  9. 10.1103/PhysRevLett.104.115502 / Phys. Rev. Lett. (2010)
  10. 10.1021/nl102931z / Nano Lett. (2010)
  11. 10.1063/1.4896551 / J. Appl. Phys. (2014)
  12. 10.1103/PhysRevB.87.195301 / Phys. Rev. B (2013)
  13. 10.1038/nnano.2010.149 / Nat. Nanotechnol. (2010)
  14. 10.1021/nl102918q / Nano Lett. (2011)
  15. I. El-kady, R. H. O. Iii, P. E. Hopkins, Z. C. Leseman, D. F. Goettler, B. Kim, C. M. Reinke, and M. F. Su, Prog. Report No. SAND2012-0127, Sandia Natl. Lab., CA, 2012.
  16. 10.1063/1.3699056 / J. Appl. Phys. (2012)
  17. 10.1038/ncomms4435 / Nat. Commun. (2014)
  18. 10.1063/1.1819431 / Rev. Sci. Instrum. (2004)
  19. M. Nomura, Y. Kage, J. Nakagawa, T. Hori, J. Maire, J. Shiomi, D. Moser, and O. Paul, “Multiscale phonon blocking in Si phononic crystal nanostructures,” pre-print arXiv:1502.02789.
  20. 10.1103/PhysRevB.84.195206 / Phys. Rev. B (2011)
  21. 10.1063/1.4894087 / J. Appl. Phys (2014)
  22. 10.7567/JJAP.53.06JE09 / Jpn. J. Appl. Phys., Part 1 (2014)
Dates
Type When
Created 10 years, 4 months ago (April 6, 2015, 1 p.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 8:12 p.m.)
Indexed 1 month ago (Aug. 2, 2025, 12:39 a.m.)
Issued 10 years, 4 months ago (April 6, 2015)
Published 10 years, 4 months ago (April 6, 2015)
Published Online 10 years, 4 months ago (April 6, 2015)
Published Print 10 years, 4 months ago (April 6, 2015)
Funders 1
  1. Ministry of Education, Culture, Sports, Science, and Technology 10.13039/501100001700 Ministry of Education, Culture, Sports, Science and Technology

    Region: Asia

    gov (National government)

    Labels3
    1. Monbu-kagaku-shō
    2. 文部科学省
    3. MEXT
    Awards1
    1. 25709090

@article{Nomura_2015, title={Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures}, volume={106}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4917036}, DOI={10.1063/1.4917036}, number={14}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Nomura, Masahiro and Nakagawa, Junki and Kage, Yuta and Maire, Jeremie and Moser, Dominik and Paul, Oliver}, year={2015}, month=apr }