Crossref journal-article
AIP Publishing
Journal of Applied Physics (317)
Abstract

Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d33 piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m−1. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

Bibliography

Garten, L. M., & Trolier-McKinstry, S. (2015). Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate. Journal of Applied Physics, 117(9).

Authors 2
  1. Lauren M. Garten (first)
  2. Susan Trolier-McKinstry (additional)
References 47 Referenced 63
  1. 10.1063/1.1518559 / Appl. Phys. Lett. (2002)
  2. 10.1146/annurev-matsci-071312-121634 / Annu. Rev. Mater. Res. (2013)
  3. 10.1007/s10853-005-5916-6 / J. Mater. Sci. (2006)
  4. 10.1063/1.2219990 / J. Appl. Phys. (2006)
  5. {'key': '2023062407144300000_c5', 'first-page': '2069', 'volume': '5', 'year': '1964', 'journal-title': 'Sov. Phys.-Solid State'} / Sov. Phys.-Solid State (1964)
  6. 10.1103/PhysRevB.34.5883 / Phys. Rev. B (1986)
  7. 10.1088/0964-1726/22/11/115017 / Smart Mater. Struct. (2013)
  8. {'key': '2023062407144300000_c8', 'first-page': '1045389', 'volume': '25', 'year': '2013', 'journal-title': 'J. Intell. Mater. Syst. Struct.'} / J. Intell. Mater. Syst. Struct. (2013)
  9. 10.1070/PU1987v030n07ABEH002926 / Sov. Phys. Usp. (1987)
  10. 10.1134/S106378340606062X / Phys. Solid State (2006)
  11. 10.1063/1.4807794 / J. Appl. Phys. (2013)
  12. 10.1103/PhysRevLett.99.167601 / Phys. Rev. Lett. (2007)
  13. 10.1063/1.1426690 / Appl. Phys. Lett. (2001)
  14. 10.1103/PhysRevLett.107.057602 / Phys. Rev. Lett. (2011)
  15. 10.1038/nmat4139 / Nat. Mater. (2015)
  16. 10.1103/PhysRevB.61.R825 / Phys. Rev. B (2000)
  17. 10.1080/00150198908216758 / Ferroelectrics (1989)
  18. 10.1016/S0955-2219(03)00190-0 / J. Eur. Ceram. Soc. (2003)
  19. 10.1016/j.proeng.2009.06.025 / Procedia Eng. (2009)
  20. 10.1103/PhysRevB.85.094107 / Phys. Rev. B (2012)
  21. 10.1063/1.4871686 / Appl. Phys. Lett. (2014)
  22. {'key': '2023062407144300000_c22', 'first-page': '012302', 'volume': '67', 'year': '2003', 'journal-title': 'Phys. Rev. B'} / Phys. Rev. B (2003)
  23. 10.1063/1.2211309 / Appl. Phys. Lett. (2006)
  24. 10.1063/1.1570517 / Appl. Phys. Lett. (2003)
  25. 10.1088/0953-8984/25/41/415901 / J. Phys. Condens. Matter (2013)
  26. 10.1063/1.4897299 / Appl. Phys. Lett. (2014)
  27. 10.1080/14786448708628000 / Philos. Mag. Ser. 5 (1887)
  28. D. V. Taylor and D. Damjanovic, Ph.D. dissertation, Dept. des Matériaux, EPFL, Lausanne, CH, 1999.
  29. 10.1063/1.3455328 / Appl. Phys. Lett. (2010)
  30. 10.1063/1.366006 / J. Appl. Phys. (1997)
  31. N. Bassiri Gharb, Ph.D. dissertation, Department of Material Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, 2005.
  32. 10.1063/1.4891717 / J. Appl. Phys. (2014)
  33. 10.1007/s10832-007-9001-1 / J. Electroceram. (2007)
  34. 10.1111/j.1551-2916.2012.05243.x / J. Am. Ceram. Soc. (2012)
  35. 10.1063/1.4823576 / Appl. Phys. Lett. (2013)
  36. 10.1063/1.1311950 / Appl. Phys. Lett. (2000)
  37. 10.1103/PhysRevB.79.184111 / Phys. Rev. B (2009)
  38. 10.1063/1.1806553 / J. Appl. Phys. (2004)
  39. 10.1103/PhysRevB.84.094123 / Phys. Rev. B (2011)
  40. 10.1021/cm052145g / Chem. Mater. (2006)
  41. 10.1002/jrs.681 / J. Raman Spectrosc. (2001)
  42. 10.1063/1.1332824 / Appl. Phys. Lett. (2000)
  43. 10.1038/nmat3141 / Nat. Mater. (2011)
  44. 10.1063/1.1593830 / Appl. Phys. Lett. (2003)
  45. 10.1126/science.1218693 / Science (2012)
  46. 10.1109/22.963146 / IEEE Trans. Microwave Theory Tech. (2001)
  47. 10.1023/A:1007797131173 / J. Supercond. (1999)
Dates
Type When
Created 10 years, 5 months ago (March 5, 2015, 1 p.m.)
Deposited 2 years, 2 months ago (June 24, 2023, 4:42 p.m.)
Indexed 2 weeks, 3 days ago (Aug. 12, 2025, 6:15 p.m.)
Issued 10 years, 5 months ago (March 5, 2015)
Published 10 years, 5 months ago (March 5, 2015)
Published Online 10 years, 5 months ago (March 5, 2015)
Published Print 10 years, 5 months ago (March 7, 2015)
Funders 1
  1. Defense Microelectronics Activity 10.13039/100017442

    Region: Americas

    gov (National government)

    Labels4
    1. DOD's Defense Microelectronics Activity
    2. Department of Defense Microelectronics Activity
    3. DMEA
    4. DoD DMEA
    Awards1
    1. H94003-11-2-1104

@article{Garten_2015, title={Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate}, volume={117}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.4913858}, DOI={10.1063/1.4913858}, number={9}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Garten, Lauren M. and Trolier-McKinstry, Susan}, year={2015}, month=mar }