Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

In this work, we evaluate by means of computer simulations the rate for ice homogeneous nucleation for several water models such as TIP4P, TIP4P/2005,TIP4P/ICE, and mW (following the same procedure as in Sanz et al. [J. Am. Chem. Soc. 135, 15008 (2013)]) in a broad temperature range. We estimate the ice-liquid interfacial free-energy, and conclude that for all water models γ decreases as the temperature decreases. Extrapolating our results to the melting temperature, we obtain a value of the interfacial free-energy between 25 and 32 mN/m in reasonable agreement with the reported experimental values. Moreover, we observe that the values of γ depend on the chosen water model and this is a key factor when numerically evaluating nucleation rates, given that the kinetic prefactor is quite similar for all water models with the exception of the mW (due to the absence of hydrogens). Somewhat surprisingly the estimates of the nucleation rates found in this work for TIP4P/2005 are slightly higher than those of the mW model, even though the former has explicit hydrogens. Our results suggest that it may be possible to observe in computer simulations spontaneous crystallization of TIP4P/2005 at about 60 K below the melting point.

Bibliography

Espinosa, J. R., Sanz, E., Valeriani, C., & Vega, C. (2014). Homogeneous ice nucleation evaluated for several water models. The Journal of Chemical Physics, 141(18).

Authors 4
  1. J. R. Espinosa (first)
  2. E. Sanz (additional)
  3. C. Valeriani (additional)
  4. C. Vega (additional)
References 96 Referenced 150
  1. {'first-page': '75', 'volume-title': 'Crystal Nucleation in Liquids and Glasses', 'year': '1991', 'key': '2023072008342933200_c1'} / Crystal Nucleation in Liquids and Glasses (1991)
  2. 10.1175/1520-0469(1995)052<1924:ANLAHI>2.0.CO;2 / J. Atmos. Sci. (1995)
  3. 10.1103/PhysRevB.32.5902 / Phys. Rev. B (1985)
  4. 10.1021/jp047665y / J. Phys. Chem. A (2005)
  5. 10.1175/1520-0469(1990)047<1056:FNRODS>2.0.CO;2 / J. Atmos. Sci. (1990)
  6. 10.1063/1.1502652 / J. Chem. Phys. (2002)
  7. 10.1021/ct300193e / J. Chem. Theory Comput. (2012)
  8. 10.1103/PhysRevLett.100.036104 / Phys. Rev. Lett. (2008)
  9. 10.1063/1.1862245 / J. Chem. Phys. (2005)
  10. 10.1038/416409a / Nature (London) (2002)
  11. 10.1063/1.445869 / J. Chem. Phys. (1983)
  12. 10.1103/PhysRevLett.90.158301 / Phys. Rev. Lett. (2003)
  13. 10.1063/1.2888999 / J. Chem. Phys. (2008)
  14. 10.1088/0953-8984/20/49/494243 / J. Phys. Condens. Matter (2008)
  15. 10.1021/jp805227c / J. Phys. Chem. B (2009)
  16. 10.1039/c1cp22167a / Phys. Chem. Chem. Phys. (2011)
  17. 10.1063/1.3677192 / J. Chem. Phys. (2012)
  18. 10.1063/1.3506838 / J. Chem. Phys. (2010)
  19. 10.1038/nature10586 / Nature (London) (2011)
  20. 10.1063/1.2121687 / J. Chem. Phys. (2005)
  21. 10.1063/1.1931662 / J. Chem. Phys. (2005)
  22. 10.1063/1.1931661 / J. Chem. Phys. (2005)
  23. 10.1063/1.2184315 / J. Chem. Phys. (2006)
  24. 10.1021/ja4028814 / J. Am. Chem. Soc. (2013)
  25. 10.1063/1.3506860 / J. Chem. Phys. (2010)
  26. 10.1063/1.3585676 / J. Chem. Phys. (2011)
  27. 10.1063/1.4873167 / J. Chem. Phys. (2014)
  28. 10.1063/1.4807479 / J. Chem. Phys. (2013)
  29. 10.1063/1.1638740 / J. Chem. Phys. (2004)
  30. 10.1038/35059035 / Nature (London) (2001)
  31. 10.1063/1.1896348 / J. Chem. Phys. (2005)
  32. 10.1063/1.3613672 / J. Chem. Phys. (2011)
  33. 10.1021/ja309117d / J. Am. Chem. Soc. (2012)
  34. 10.1063/1.2338303 / J. Chem. Phys. (2006)
  35. 10.1063/1.3514144 / J. Chem. Phys. (2010)
  36. 10.1063/1.1563248 / J. Chem. Phys. (2003)
  37. 10.1063/1.2977970 / J. Chem. Phys. (2008)
  38. 10.1021/jp067388q / J. Phys. Chem. C (2007)
  39. 10.1063/1.4759113 / J. Chem. Phys. (2012)
  40. 10.1039/c1cp22022e / Phys. Chem. Chem. Phys. (2011)
  41. 10.1073/pnas.1210331110 / Proc. Natl. Acad. Sci. U.S.A. (2012)
  42. 10.1073/pnas.1113059109 / Proc. Natl. Acad. Sci. U.S.A. (2012)
  43. 10.1039/C4CP03398A / Phys. Chem. Chem. Phys. (2014)
  44. {'key': '2023072008342933200_c44'}
  45. {'key': '2023072008342933200_c45'}
  46. 10.1007/s008940100045 / J. Mol. Model. (2001)
  47. 10.1063/1.2408420 / J. Chem. Phys. (2007)
  48. 10.1063/1.328693 / J. Appl. Phys. (1981)
  49. 10.1063/1.470117 / J. Chem. Phys. (1995)
  50. 10.1557/mrs.2012.96 / MRS Bulletin (2012)
  51. 10.1006/jcph.1995.1039 / J. Comput. Phys. (1995)
  52. 10.1063/1.3175694 / J. Chem. Phys. (2009)
  53. 10.1063/1.3298879 / J. Chem. Phys. (2010)
  54. 10.1039/c2cp40962c / Phys. Chem. Chem. Phys. (2012)
  55. 10.1039/c2cp42393f / Phys. Chem. Chem. Phys. (2012)
  56. 10.1039/b805531a / Faraday Discuss. (2009)
  57. 10.1039/c1cp22168j / Phys. Chem. Chem. Phys. (2011)
  58. 10.1063/1.2183324 / J. Phys. Chem. Ref. Data (2006)
  59. See supplementary material at http://dx.doi.org/10.1063/1.4897524 for further details about the runs used to determine Nc and the attachment rate f +.
  60. 10.1088/0953-8984/26/23/233201 / J. Phys. Condens. Matter (2014)
  61. 10.1073/pnas.0702608104 / Proc. Natl. Acad. Sci. U.S.A. (2007)
  62. 10.1063/1.4819898 / J. Chem. Phys. (2013)
  63. 10.1063/1.1699435 / J. Appl. Phys. (1950)
  64. 10.1063/1.1391481 / J. Chem. Phys. (2001)
  65. 10.1063/1.1683075 / J. Chem. Phys. (2004)
  66. 10.1080/14786437708237066 / Philos. Mag. (1977)
  67. 10.1039/c2cp41073g / Phys. Chem. Chem. Phys. (2012)
  68. 10.1063/1.3677196 / J. Chem. Phys. (2012)
  69. 10.1021/jp9839044 / J. Phys. Chem. (1999)
  70. 10.1063/1.4825111 / J. Chem. Phys. (2013)
  71. 10.1038/nmat3977 / Nat. Mater. (2014)
  72. 10.1039/c003297b / Phys. Chem. Chem. Phys. (2010)
  73. 10.1039/c2cp23116f / Phys. Chem. Chem. Phys. (2012)
  74. 10.1029/97JD02243 / J. Geophys. Res. (1997)
  75. 10.1021/j100012a010 / J. Phys. Chem. (1995)
  76. 10.1021/j100082a011 / J. Phys. Chem. (1994)
  77. 10.1063/1.3439585 / J. Chem. Phys. (2010)
  78. 10.1039/c1cp21210a / Phys. Chem. Chem. Phys. (2011)
  79. 10.1080/14786440009463908 / Philos. Mag. (1900)
  80. {'key': '2023072008342933200_c80', 'first-page': '498', 'volume': '1', 'year': '1932', 'journal-title': 'Phys. J. USSR'} / Phys. J. USSR (1932)
  81. 10.1103/PhysRevLett.49.1496 / Phys. Rev. Lett. (1982)
  82. 10.1063/1.4748377 / J. Chem. Phys. (2012)
  83. 10.1063/1.1750380 / J. Chem. Phys. (1939)
  84. {'volume-title': 'Metastable Liquids: Concepts and Principles', 'year': '1996', 'key': '2023072008342933200_c84'} / Metastable Liquids: Concepts and Principles (1996)
  85. 10.1103/PhysRevLett.100.165702 / Phys. Rev. Lett. (2008)
  86. 10.1063/1.4737867 / J. Chem. Phys. (2012)
  87. 10.1038/360324a0 / Nature (London) (1992)
  88. 10.1063/1.4769126 / J. Chem. Phys. (2012)
  89. 10.1063/1.3643333 / J. Chem. Phys. (2011)
  90. 10.1038/nature13405 / Nature (London) (2014)
  91. 10.1088/0953-8984/12/8A/316 / J. Phys.: Condens. Matter (2000)
  92. 10.1016/j.cryobiol.2012.11.007 / Cryobiology (2013)
  93. 10.1128/am.28.3.456-459.1974 / Appl. Microbiol. (1974)
  94. 10.1175/BAMS-86-6-795 / Bull. Am. Meteor. Soc. (2005)
  95. 10.1126/science.276.5315.1072 / Science (1997)
  96. 10.1073/pnas.0910818107 / Proc. Natl. Acad. Sci. U.S.A. (2010)
Dates
Type When
Created 10 years, 10 months ago (Oct. 21, 2014, 8:30 p.m.)
Deposited 2 years, 1 month ago (July 20, 2023, 4:34 a.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 8:10 a.m.)
Issued 10 years, 10 months ago (Oct. 21, 2014)
Published 10 years, 10 months ago (Oct. 21, 2014)
Published Online 10 years, 10 months ago (Oct. 21, 2014)
Published Print 10 years, 9 months ago (Nov. 14, 2014)
Funders 1
  1. Ministerio de Educación y Cultura
    Awards1
    1. FIS2013/43209- P

@article{Espinosa_2014, title={Homogeneous ice nucleation evaluated for several water models}, volume={141}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4897524}, DOI={10.1063/1.4897524}, number={18}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Espinosa, J. R. and Sanz, E. and Valeriani, C. and Vega, C.}, year={2014}, month=oct }