Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

Recently, fabricated two dimensional (2D) phosphorene crystal structures have demonstrated great potential in applications of electronics. Mechanical strain was demonstrated to be able to significantly modify the electronic properties of phosphorene and few-layer black phosphorus. In this work, we employed first principles density functional theory calculations to explore the mechanical properties of phosphorene, including ideal tensile strength and critical strain. It was found that a monolayer phosphorene can sustain tensile strain up to 27% and 30% in the zigzag and armchair directions, respectively. This enormous strain limit of phosphorene results from its unique puckered crystal structure. We found that the tensile strain applied in the armchair direction stretches the pucker of phosphorene, rather than significantly extending the P-P bond lengths. The compromised dihedral angles dramatically reduce the required strain energy. Compared to other 2D materials, such as graphene, phosphorene demonstrates superior flexibility with an order of magnitude smaller Young's modulus. This is especially useful in practical large-magnitude-strain engineering. Furthermore, the anisotropic nature of phosphorene was also explored. We derived a general model to calculate the Young's modulus along different directions for a 2D system.

Bibliography

Wei, Q., & Peng, X. (2014). Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 104(25).

Authors 2
  1. Qun Wei (first)
  2. Xihong Peng (additional)
References 46 Referenced 955
  1. 10.1038/nnano.2014.35 / Nat. Nanotechnol. (2014)
  2. 10.1021/nn501226z / ACS Nano (2014)
  3. F. Xia, H. Wang, and Y. Jia, e-print arXiv:1402.0270.
  4. 10.1038/506019a / Nature (2014)
  5. 10.1016/0378-4363(81)90222-9 / Physica B+C (1981)
  6. 10.1103/PhysRevLett.112.176801 / Phys. Rev. Lett. (2014)
  7. V. Tran, R. Soklaski, Y. Liang, and L. Yang, e-print arXiv:1402.4192.
  8. X. Peng, A. Copple, and Q. Wei, e-print arXiv:1403.3771.
  9. 10.1038/nature04706 / Nature (2006)
  10. 10.1038/39282 / Nature (1997)
  11. 10.1142/S175882510900023X / Int. J. Appl. Mech. (2009)
  12. 10.1103/PhysRevB.80.115322 / Phys. Rev. B (2009)
  13. 10.1088/0953-8984/23/11/115502 / J. Phys.: Condens. Matter (2011)
  14. 10.1088/0022-3727/44/12/125301 / J. Phys. D: Appl. Phys. (2011)
  15. 10.1063/1.4718026 / Appl. Phys. Lett. (2012)
  16. 10.1063/1.3389495 / Appl. Phys. Lett. (2010)
  17. 10.5772/681 / Nanowires - Fundamental Research by Hashim (2011)
  18. 10.1143/JJAP.40.2866 / Jpn. J. Appl. Phys., Part 1 (2001)
  19. {'volume-title': 'Proceedings of the IEEE International Electron Devices Meeting, IEDM Technical Digest', 'year': '2003', 'key': '2023073108142010700_c19'} / Proceedings of the IEEE International Electron Devices Meeting, IEDM Technical Digest (2003)
  20. 10.1063/1.1392309 / Appl. Phys. Lett. (2001)
  21. 10.1063/1.1704872 / Appl. Phys. Lett. (2004)
  22. 10.1063/1.1566463 / Appl. Phys. Lett. (2003)
  23. 10.1016/j.msec.2005.06.025 / Mater. Sci. Eng., C (2005)
  24. 10.1021/cr900075v / Chem. Rev. (2010)
  25. 10.1103/PhysRevB.87.115308 / Phys. Rev. B (2013)
  26. 10.1021/nl500935z / Nano Lett.
  27. 10.1038/nature07719 / Nature (2009)
  28. 10.1126/science.1157996 / Science (2008)
  29. 10.1186/1556-276X-7-233 / Nanoscale Res. Lett. (2012)
  30. 10.1103/PhysRev.140.A1133 / Phys. Rev. (1965)
  31. 10.1103/PhysRevLett.77.3865 / Phys. Rev. Lett. (1996)
  32. 10.1103/PhysRevB.50.17953 / Phys. Rev. B (1994)
  33. 10.1103/PhysRevB.59.1758 / Phys. Rev. B (1999)
  34. 10.1103/PhysRevB.54.11169 / Phys. Rev. B (1996)
  35. 10.1016/0927-0256(96)00008-0 / Comput. Mater. Sci. (1996)
  36. 10.1107/S0365110X65004140 / Acta Crystallogr. (1965)
  37. J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, e-print arXiv:1401.5045.
  38. 10.1103/PhysRevLett.98.105503 / Phys. Rev. Lett. (2007)
  39. 10.1103/PhysRevB.76.064120 / Phys. Rev. B (2007)
  40. 10.1103/PhysRevB.64.212103 / Phys. Rev. B (2001)
  41. 10.1103/PhysRevB.66.094110 / Phys. Rev. B (2002)
  42. 10.1143/JPSJ.60.1612 / J. Phys. Soc. Jpn. (1991)
  43. 10.1063/1.438523 / J. Chem. Phys. (1979)
  44. 10.1016/j.jmps.2007.07.013 / J. Mech. Phys. Solids (2008)
  45. 10.1002/adma.201103965 / Adv. Mater. (2012)
  46. 10.1021/nl1022139 / Nano Lett. (2010)
Dates
Type When
Created 11 years, 1 month ago (June 27, 2014, 8:30 p.m.)
Deposited 2 years ago (July 31, 2023, 4:14 a.m.)
Indexed 1 week, 2 days ago (Aug. 12, 2025, 5:42 p.m.)
Issued 11 years, 1 month ago (June 23, 2014)
Published 11 years, 1 month ago (June 23, 2014)
Published Online 11 years, 1 month ago (June 27, 2014)
Published Print 11 years, 1 month ago (June 23, 2014)
Funders 1
  1. Faculty Research Initiative Fund from School of Letters and Sciences at Arizona State University (ASU)

@article{Wei_2014, title={Superior mechanical flexibility of phosphorene and few-layer black phosphorus}, volume={104}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4885215}, DOI={10.1063/1.4885215}, number={25}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Wei, Qun and Peng, Xihong}, year={2014}, month=jun }