Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

Electromechanical coupling is ubiquitous in nature and underpins the functionality of materials and systems as diverse as ferroelectric and multiferroic materials, electrochemical devices, and biological systems, and strain-based scanning probe microscopy (s-SPM) techniques have emerged as a powerful tool in characterizing and manipulating electromechanical coupling at the nanoscale. Uncovering underlying mechanisms of electromechanical coupling in these diverse materials and systems, however, is a difficult outstanding problem, and questions and confusions arise from recent experiment observations of electromechanical coupling and its apparent polarity switching in some unexpected materials. We propose a series of s-SPM experiments to identify different microscopic mechanisms underpinning electromechanical coupling and demonstrate their feasibility using three representative materials. By employing a combination of spectroscopic studies and different modes of s-SPM, we show that it is possible to distinguish electromechanical coupling arising from spontaneous polarization, induced dipole moment, and ionic Vegard strain, and this offers a clear guidance on using s-SPM to study a wide variety of functional materials and systems.

Bibliography

Chen, Q. N., Ou, Y., Ma, F., & Li, J. (2014). Mechanisms of electromechanical coupling in strain based scanning probe microscopy. Applied Physics Letters, 104(24).

Authors 4
  1. Qian Nataly Chen (first)
  2. Yun Ou (additional)
  3. Feiyue Ma (additional)
  4. Jiangyu Li (additional)
References 20 Referenced 132
  1. 10.1016/0039-6028(94)91089-8 / Surf. Sci. (1994)
  2. 10.1103/PhysRevLett.74.4309 / Phys. Rev. Lett. (1995)
  3. 10.1116/1.589143 / J. Vac. Sci. Technol., B (1996)
  4. 10.1146/annurev.matsci.37.052506.084323 / Annu. Rev. Mater. Res. (2007)
  5. {'key': '2023070515313563500_c5', 'first-page': '257', 'volume': '20', 'year': '2005', 'journal-title': 'J. Inorg. Mater.'} / J. Inorg. Mater. (2005)
  6. 10.1111/j.1551-2916.2009.03240.x / J. Am. Ceram. Soc. (2009)
  7. 10.1038/nnano.2010.174 / Nat. Nanotechnol. (2010)
  8. 10.1063/1.4742933 / Appl. Phys. Lett. (2012)
  9. 10.1021/nn305648j / ACS Nano (2013)
  10. 10.1039/c3nr00770g / Nanoscale (2013)
  11. {'journal-title': 'J. Appl. Phys.', 'key': '2023070515313563500_c11'} / J. Appl. Phys.
  12. {'journal-title': 'J. Appl. Phys.', 'key': '2023070515313563500_c12'} / J. Appl. Phys.
  13. 10.1063/1.4873386 / Appl. Phys. Lett. (2014)
  14. 10.1103/PhysRevLett.110.168101 / Phys. Rev. Lett. (2013)
  15. 10.1103/PhysRevLett.108.078103 / Phys. Rev. Lett. (2012)
  16. 10.1016/S1369-7021(11)70280-2 / Mater. Today (2011)
  17. 10.1103/PhysRevB.83.195313 / Phys. Rev. B (2011)
  18. 10.1039/c1nr11099c / Nanoscale (2012)
  19. 10.1039/c3cp52501e / Phys. Chem. Chem. Phys. (2013)
  20. 10.1021/nn203342v / ACS Nano (2011)
Dates
Type When
Created 11 years, 2 months ago (June 19, 2014, 10:16 a.m.)
Deposited 2 years, 1 month ago (July 5, 2023, 4:06 p.m.)
Indexed 1 month ago (July 30, 2025, 7:03 a.m.)
Issued 11 years, 2 months ago (June 16, 2014)
Published 11 years, 2 months ago (June 16, 2014)
Published Online 11 years, 2 months ago (June 18, 2014)
Published Print 11 years, 2 months ago (June 16, 2014)
Funders 1
  1. NSF 10.13039/100000001 National Science Foundation

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. CMMI-1100339

@article{Chen_2014, title={Mechanisms of electromechanical coupling in strain based scanning probe microscopy}, volume={104}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4884422}, DOI={10.1063/1.4884422}, number={24}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Chen, Qian Nataly and Ou, Yun and Ma, Feiyue and Li, Jiangyu}, year={2014}, month=jun }