Abstract
Electromechanical coupling is ubiquitous in nature and underpins the functionality of materials and systems as diverse as ferroelectric and multiferroic materials, electrochemical devices, and biological systems, and strain-based scanning probe microscopy (s-SPM) techniques have emerged as a powerful tool in characterizing and manipulating electromechanical coupling at the nanoscale. Uncovering underlying mechanisms of electromechanical coupling in these diverse materials and systems, however, is a difficult outstanding problem, and questions and confusions arise from recent experiment observations of electromechanical coupling and its apparent polarity switching in some unexpected materials. We propose a series of s-SPM experiments to identify different microscopic mechanisms underpinning electromechanical coupling and demonstrate their feasibility using three representative materials. By employing a combination of spectroscopic studies and different modes of s-SPM, we show that it is possible to distinguish electromechanical coupling arising from spontaneous polarization, induced dipole moment, and ionic Vegard strain, and this offers a clear guidance on using s-SPM to study a wide variety of functional materials and systems.
References
20
Referenced
132
10.1016/0039-6028(94)91089-8
/ Surf. Sci. (1994)10.1103/PhysRevLett.74.4309
/ Phys. Rev. Lett. (1995)10.1116/1.589143
/ J. Vac. Sci. Technol., B (1996)10.1146/annurev.matsci.37.052506.084323
/ Annu. Rev. Mater. Res. (2007){'key': '2023070515313563500_c5', 'first-page': '257', 'volume': '20', 'year': '2005', 'journal-title': 'J. Inorg. Mater.'}
/ J. Inorg. Mater. (2005)10.1111/j.1551-2916.2009.03240.x
/ J. Am. Ceram. Soc. (2009)10.1038/nnano.2010.174
/ Nat. Nanotechnol. (2010)10.1063/1.4742933
/ Appl. Phys. Lett. (2012)10.1021/nn305648j
/ ACS Nano (2013)10.1039/c3nr00770g
/ Nanoscale (2013){'journal-title': 'J. Appl. Phys.', 'key': '2023070515313563500_c11'}
/ J. Appl. Phys.{'journal-title': 'J. Appl. Phys.', 'key': '2023070515313563500_c12'}
/ J. Appl. Phys.10.1063/1.4873386
/ Appl. Phys. Lett. (2014)10.1103/PhysRevLett.110.168101
/ Phys. Rev. Lett. (2013)10.1103/PhysRevLett.108.078103
/ Phys. Rev. Lett. (2012)10.1016/S1369-7021(11)70280-2
/ Mater. Today (2011)10.1103/PhysRevB.83.195313
/ Phys. Rev. B (2011)10.1039/c1nr11099c
/ Nanoscale (2012)10.1039/c3cp52501e
/ Phys. Chem. Chem. Phys. (2013)10.1021/nn203342v
/ ACS Nano (2011)
Dates
Type | When |
---|---|
Created | 11 years, 2 months ago (June 19, 2014, 10:16 a.m.) |
Deposited | 2 years, 1 month ago (July 5, 2023, 4:06 p.m.) |
Indexed | 1 month ago (July 30, 2025, 7:03 a.m.) |
Issued | 11 years, 2 months ago (June 16, 2014) |
Published | 11 years, 2 months ago (June 16, 2014) |
Published Online | 11 years, 2 months ago (June 18, 2014) |
Published Print | 11 years, 2 months ago (June 16, 2014) |
Funders
1
NSF
10.13039/100000001
National Science FoundationRegion: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
1
- CMMI-1100339
@article{Chen_2014, title={Mechanisms of electromechanical coupling in strain based scanning probe microscopy}, volume={104}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4884422}, DOI={10.1063/1.4884422}, number={24}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Chen, Qian Nataly and Ou, Yun and Ma, Feiyue and Li, Jiangyu}, year={2014}, month=jun }