Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS2) and molybdenum disulfide (MoS2)) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ∼0.1 nm) compared to conventional SiO2 substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS2 substrates (G/WS2) are equally promising for high quality electronic transport (μ ∼ 38 000 cm2/V s at room temperature), followed by G/MoS2 (μ ∼ 10 000 cm2/V s) and G/GaSe (μ ∼ 2200 cm2/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS2 and G/MoS2 heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.

Bibliography

Tan, J. Y., Avsar, A., Balakrishnan, J., Koon, G. K. W., Taychatanapat, T., O’Farrell, E. C. T., Watanabe, K., Taniguchi, T., Eda, G., Castro Neto, A. H., & Özyilmaz, B. (2014). Electronic transport in graphene-based heterostructures. Applied Physics Letters, 104(18).

Authors 11
  1. J. Y. Tan (first)
  2. A. Avsar (additional)
  3. J. Balakrishnan (additional)
  4. G. K. W. Koon (additional)
  5. T. Taychatanapat (additional)
  6. E. C. T. O'Farrell (additional)
  7. K. Watanabe (additional)
  8. T. Taniguchi (additional)
  9. G. Eda (additional)
  10. A. H. Castro Neto (additional)
  11. B. Özyilmaz (additional)
References 32 Referenced 64
  1. 10.1038/nnano.2012.193 / Nat. Nanotechnol. (2012)
  2. 10.1038/nnano.2013.219 / Nat. Nanotechnol. (2013)
  3. 10.1038/nnano.2013.206 / Nat. Nanotechnol. (2013)
  4. 10.1021/nn300889c / ACS Nano (2012)
  5. 10.1038/nphys2691 / Nat. Phys. (2013)
  6. 10.1088/0031-8949/2012/T146/014006 / Phys. Scr.
  7. 10.1021/nl200758b / Nano Lett. (2011)
  8. 10.1126/science.1244358 / Science (2013)
  9. 10.1038/nphys2007 / Nat. Phys. (2011)
  10. 10.1038/ncomms2652 / Nat. Commun. (2013)
  11. 10.1126/science.1218461 / Science (2012)
  12. 10.1126/science.1235547 / Science (2013)
  13. 10.1038/nature12385 / Nature (2013)
  14. 10.1016/j.jcrysgro.2006.12.061 / J. Cryst. Growth (2007)
  15. 10.1021/nn305275h / ACS Nano (2013)
  16. 10.1063/1.4817409 / Appl. Phys. Lett. (2013)
  17. 10.1038/srep00893 / Sci. Rep. (2012)
  18. 10.1038/nmat3386 / Nature Mater. (2012)
  19. 10.1038/nnano.2010.172 / Nat. Nanotechnol. (2010)
  20. 10.1063/1.3665405 / Appl. Phys. Lett. (2011)
  21. 10.1038/ncomms3642 / Nat. Commun. (2013)
  22. 10.1063/1.4852615 / Appl. Phys. Lett. (2013)
  23. 10.1021/j150531a020 / J. Phys. Chem. (1955)
  24. 10.1115/1.2834113 / J. Tribol. (1999)
  25. 10.1080/05698196808972207 / ASLE Trans. (1968)
  26. 10.1063/1.3685504 / Appl. Phys. Lett. (2012)
  27. 10.1021/nn303082a / ACS Nano (2012)
  28. 10.1103/PhysRevLett.102.206603 / Phys. Rev. Lett. (2009)
  29. 10.1021/nn101950n / ACS Nano (2010)
  30. 10.1021/nl0259232 / Nano Lett. (2003)
  31. 10.1021/nl500212s / Nano Lett. (2014)
  32. A. V. Kertinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, arXiv: 1403.5225.
Dates
Type When
Created 11 years, 3 months ago (May 5, 2014, 9:38 p.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 2:26 p.m.)
Indexed 3 weeks, 1 day ago (July 30, 2025, 7:03 a.m.)
Issued 11 years, 3 months ago (May 5, 2014)
Published 11 years, 3 months ago (May 5, 2014)
Published Online 11 years, 3 months ago (May 5, 2014)
Published Print 11 years, 3 months ago (May 5, 2014)
Funders 0

None

@article{Tan_2014, title={Electronic transport in graphene-based heterostructures}, volume={104}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4872178}, DOI={10.1063/1.4872178}, number={18}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Tan, J. Y. and Avsar, A. and Balakrishnan, J. and Koon, G. K. W. and Taychatanapat, T. and O’Farrell, E. C. T. and Watanabe, K. and Taniguchi, T. and Eda, G. and Castro Neto, A. H. and Özyilmaz, B.}, year={2014}, month=may }