Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

Bibliography

Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A., & Hennig, R. G. (2014). Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. The Journal of Chemical Physics, 140(8).

Authors 5
  1. Kiran Mathew (first)
  2. Ravishankar Sundararaman (additional)
  3. Kendra Letchworth-Weaver (additional)
  4. T. A. Arias (additional)
  5. Richard G. Hennig (additional)
References 43 Referenced 2,384
  1. 10.1021/ja1013745 / J. Am. Chem. Soc. (2010)
  2. 10.1021/nn3000466 / ACS Nano (2012)
  3. 10.1021/nl3019559 / Nano Lett. (2012)
  4. 10.1021/ja107874u / J. Am. Chem. Soc. (2010)
  5. 10.1021/la104373v / Langmuir (2011)
  6. 10.1021/ja110454b / J. Am. Chem. Soc. (2011)
  7. 10.1021/nn3052617 / ACS Nano (2013)
  8. 10.1021/ja9105682 / J. Am. Chem. Soc. (2010)
  9. 10.1021/la2004535 / Langmuir (2011)
  10. 10.1103/PhysRevB.86.075140 / Phys. Rev. B (2012)
  11. 10.1103/PhysRevB.85.201102 / Phys. Rev. B (2012)
  12. 10.1002/qua.10548 / Int. J. Quantum Chem. (2003)
  13. 10.1021/jp044822k / J. Phys. Chem. B (2005)
  14. 10.1063/1.3676407 / J. Chem. Phys. (2012)
  15. 10.1088/0965-0393/21/7/074005 / Modell. Simul. Mater. Sci. Eng. (2013)
  16. 10.1016/S0010-4655(00)00072-2 / Comput. Phys. Commun. (2000)
  17. {'year': '2012', 'key': '2023080509440320900_c17'} (2012)
  18. {'volume-title': 'Vaspsol: Software Module for Solid/Liquid Interfaces for VASP', 'year': '2013', 'key': '2023080509440320900_c18'} / Vaspsol: Software Module for Solid/Liquid Interfaces for VASP (2013)
  19. 10.1103/PhysRevB.75.205105 / Phys. Rev. B (2007)
  20. 10.1016/j.cpc.2013.11.013 / Comput. Phys. Commun. (2014)
  21. 10.1021/ar800019z / Acc. Chem. Res. (2008)
  22. 10.1021/cr9904009 / Chem. Rev. (2005)
  23. 10.1016/0927-0256(96)00008-0 / Comput. Mater. Sci. (1996)
  24. 10.1103/PhysRevB.41.7892 / Phys. Rev. B (1990)
  25. 10.1103/PhysRevB.59.1758 / Phys. Rev. B (1999)
  26. 10.1103/PhysRevB.50.17953 / Phys. Rev. B (1994)
  27. 10.1088/0953-8984/21/39/395502 / J. Phys.: Condens. Matter (2009)
  28. 10.1016/S0927-0256(02)00325-7 / Comput. Mater. Sci. (2002)
  29. {'volume-title': 'Computational Chemistry Comparison and Benchmark Database', 'year': '2012', 'author': 'Johnson', 'key': '2023080509440320900_c29'} / Computational Chemistry Comparison and Benchmark Database by Johnson (2012)
  30. 10.1103/PhysRevB.87.245402 / Phys. Rev. B (2013)
  31. 10.1002/pssb.201046149 / Phys. Status Solidi B (2011)
  32. 10.1016/j.electacta.2013.07.140 / Electrochim. Acta (2013)
  33. 10.1038/495453a / Nature (London) (2013)
  34. 10.1021/jp8037076 / J. Phys. Chem. C (2008)
  35. 10.1088/0022-3727/38/12/023 / J. Phys. D: Appl. Phys. (2005)
  36. 10.1016/j.matchemphys.2011.12.006 / Mater. Chem. Phys. (2012)
  37. 10.1021/nl401298s / Nano Lett. (2013)
  38. 10.1021/jp905429p / J. Phys. Chem. A (2009)
  39. 10.1126/science.1068849 / Science (2002)
  40. 10.1021/j100040a018 / J. Phys. Chem. (1995)
  41. 10.1021/jp960488j / J. Phys. Chem. (1996)
  42. 10.1021/jp003468x / J. Phys. Chem. A (2001)
  43. {'year': '2009', 'key': '2023080509440320900_c43'} (2009)
Dates
Type When
Created 11 years, 6 months ago (Feb. 26, 2014, 8:30 p.m.)
Deposited 2 years ago (Aug. 5, 2023, 5:45 a.m.)
Indexed 18 minutes ago (Aug. 28, 2025, 1:01 a.m.)
Issued 11 years, 6 months ago (Feb. 26, 2014)
Published 11 years, 6 months ago (Feb. 26, 2014)
Published Online 11 years, 6 months ago (Feb. 26, 2014)
Published Print 11 years, 6 months ago (Feb. 28, 2014)
Funders 1
  1. DOE 10.13039/100000015 U.S. Department of Energy

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. DE-SC0001086

@article{Mathew_2014, title={Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways}, volume={140}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4865107}, DOI={10.1063/1.4865107}, number={8}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Mathew, Kiran and Sundararaman, Ravishankar and Letchworth-Weaver, Kendra and Arias, T. A. and Hennig, Richard G.}, year={2014}, month=feb }