Abstract
We study numerically the crystallization process in a supersaturated suspension of repulsive colloidal particles driven by simple shear flow. The effect of the shear flow on crystallization is two-fold: while it suppresses the initial nucleation, once a large enough critical nucleus has formed its growth is enhanced by the shear flow. Combining both effects implies an optimal strain rate at which the overall crystallization rate has a maximum. To gain insight into the underlying mechanisms, we employ a discrete state model describing the transitions between the local structural configurations around single particles. We observe a time-scale separation between these transitions and the overall progress of the crystallization allowing for an effective Markovian description. By using this model, we demonstrate that the suppression of nucleation is due to the inhibition of a pre-structured liquid.
References
57
Referenced
29
10.1016/0370-1573(94)90017-5
/ Phys. Rep. (1994)10.1002/andp.19354160806
/ Ann. Phys. (1935){'volume-title': 'Kinetic Theory of Liquids', 'year': '1947', 'key': '2023062522215904800_c3'}
/ Kinetic Theory of Liquids (1947){'volume-title': 'Statistical Physics of Liquids at Freezing and Beyond', 'year': '2011', 'key': '2023062522215904800_c4'}
/ Statistical Physics of Liquids at Freezing and Beyond (2011)10.1088/0953-8984/9/29/001
/ J. Phys.: Condens. Matter (1997)10.1088/0953-8984/17/4/R02
/ J. Phys.: Condens. Matter (2005)10.1038/4151008a
/ Nature (London) (2002)10.1063/1.1540091
/ J. Chem. Phys. (2003)10.1103/PhysRevLett.61.1033
/ Phys. Rev. Lett. (1988)10.1016/0378-4371(94)90167-8
/ Physica A (1994)10.1103/PhysRevE.57.6859
/ Phys. Rev. E (1998)10.1103/PhysRevE.61.2929
/ Phys. Rev. E (2000)10.1103/PhysRevE.66.022401
/ Phys. Rev. E (2002)10.1103/PhysRevE.77.021505
/ Phys. Rev. E (2008)10.1103/PhysRevLett.107.068302
/ Phys. Rev. Lett. (2011)10.1063/1.469558
/ J. Chem. Phys. (1995)10.1103/PhysRevE.52.6424
/ Phys. Rev. E (1995)10.1103/PhysRevLett.93.068303
/ Phys. Rev. Lett. (2004)10.1021/la051490h
/ Langmuir (2005)10.1073/pnas.0812519106
/ Proc. Natl. Acad. Sci. U.S.A. (2009)10.1196/annals.1362.048
/ Ann. N.Y. Acad. Sci. (2006)10.1103/PhysRevE.78.031403
/ Phys. Rev. E (2008)10.1063/1.2981052
/ J. Chem. Phys. (2008)10.1103/PhysRevE.82.021505
/ Phys. Rev. E (2010)10.1103/PhysRevE.48.3766
/ Phys. Rev. E (1993)10.1103/PhysRevE.55.3054
/ Phys. Rev. E (1997)10.1007/3-540-45725-9_57
/ Prog. Colloid Polym. Sci. (2001)10.1126/science.1058457
/ Science (2001)10.1039/c2sm26473k
/ Soft Matter (2013)10.1088/0953-8984/21/20/203101
/ J. Phys.: Condens. Matter (2009)10.1038/nature01328
/ Nature (London) (2003)10.1002/0471231509.ch1
/ Adv. Chem. Phys. (2002)10.1021/jp0471249
/ J. Phys. Chem. B (2004)10.1103/PhysRevLett.94.018104
/ Phys. Rev. Lett. (2005)10.1088/0953-8984/21/46/463102
/ J. Phys.: Condens. Matter (2009)10.1016/0021-9991(77)90121-8
/ J. Comput. Phys. (1977){'volume-title': 'Understanding Molecular Simulation: From Algorithms to Applications', 'year': '2002', 'key': '2023062522215904800_c37'}
/ Understanding Molecular Simulation: From Algorithms to Applications (2002)10.1063/1.471613
/ J. Chem. Phys. (1996)10.1103/PhysRevLett.96.046102
/ Phys. Rev. Lett. (2006)10.1103/PhysRevLett.105.025701
/ Phys. Rev. Lett. (2010)10.1103/PhysRevLett.106.085701
/ Phys. Rev. Lett. (2011)10.1073/pnas.1001040107
/ Proc. Natl. Acad. Sci. U.S.A. (2010)10.1038/srep00505
/ Sci. Rep. (2012){'volume-title': 'Computer Simulation of Liquids', 'year': '1987', 'key': '2023062522215904800_c44'}
/ Computer Simulation of Liquids (1987)10.1103/PhysRevE.59.2175
/ Phys. Rev. E (1999)10.1209/0295-5075/92/58001
/ Europhys. Lett. (2010)10.1063/1.453924
/ J. Chem. Phys. (1988)10.1063/1.459898
/ J. Chem. Phys. (1991)10.1038/385141a0
/ Nature (London) (1997)10.1038/43141
/ Nature (London) (1997){'key': '2023062522215904800_c51', 'first-page': '289', 'volume': '22', 'year': '1897', 'journal-title': 'Z. Phys. Chem.'}
/ Z. Phys. Chem. (1897)10.1039/a809346f
/ Phys. Chem. Chem. Phys. (1999)10.1103/PhysRevB.28.784
/ Phys. Rev. B (1983)10.1063/1.2977970
/ J. Chem. Phys. (2008)10.1063/1.471721
/ J. Chem. Phys. (1996)-
M. Radu and T. Schilling, “Solvent hydrodynamics speed up crystal nucleation in suspensions of hard spheres,” preprint arXiv:1301.5592 (2013).
(
10.1209/0295-5075/105/26001
) -
D. Roehm, S. Kesselheim, and A. Arnold, “Hydrodynamic correlations slow down crystallization of soft colloids,” preprint arXiv:1304.4158 (2013).
(
10.1039/C4SM00686K
)
Dates
Type | When |
---|---|
Created | 12 years, 2 months ago (June 14, 2013, 7:02 p.m.) |
Deposited | 2 years, 2 months ago (June 25, 2023, 6:22 p.m.) |
Indexed | 4 weeks, 1 day ago (July 30, 2025, 6:58 a.m.) |
Issued | 12 years, 2 months ago (June 14, 2013) |
Published | 12 years, 2 months ago (June 14, 2013) |
Published Online | 12 years, 2 months ago (June 14, 2013) |
Published Print | 12 years, 2 months ago (June 14, 2013) |
@article{Lander_2013, title={Crystallization in a sheared colloidal suspension}, volume={138}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4808354}, DOI={10.1063/1.4808354}, number={22}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Lander, Boris and Seifert, Udo and Speck, Thomas}, year={2013}, month=jun }