Abstract
This paper describes the instrumentation for broadband frequency domain thermoreflectance (BB-FDTR), a novel, continuous wave laser technique for measuring the thermal conductivity accumulation function. The thermal conductivity accumulation function describes cumulative contributions to the bulk thermal conductivity of a material from energy carriers with different mean free paths. It can be used to map reductions in thermal conductivity in nano-devices, which arise when the dimensions of the device are commensurate to the mean free path of energy carriers. BB-FDTR uses high frequency surface temperature modulation to generate non-diffusive phonon transport realized through a reduction in the perceived thermal conductivity. By controlling the modulation frequency it is possible to reconstruct the thermal conductivity accumulation function. A unique heterodyning technique is used to down-convert the signal, therein improving our signal to noise ratio and enabling results over a broader range of modulation frequencies (200 kHz–200 MHz) and hence mean free paths.
References
32
Referenced
91
10.1038/nature06381
/ Nature (London) (2008)10.1126/science.1156446
/ Science (2008)10.1038/nmat3064
/ Nat. Mater. (2011)10.1038/nmat3213
/ Nat. Mater. (2012)10.1103/PhysRevB.84.085204
/ Phys. Rev. B (2011)10.1103/PhysRevLett.109.205901
/ Phys. Rev. Lett. (2012)10.1103/PhysRevLett.110.025901
/ Phys. Rev. Lett. (2013)10.1557/opl.2011.1333
/ Mater. Res. Soc. Symp. Proc. (2011)10.1103/PhysRevLett.107.095901
/ Phys. Rev. Lett. (2011)10.1103/PhysRevB.87.035437
/ Phys. Rev. B (2013){'key': '2023070315312257200_c11', 'article-title': 'Thermal conductivity of nanostructured thermoelectric materials', 'volume-title': 'Thermoelectrics Handbook: Macro to Nano', 'author': 'Rowe', 'year': '2006'}
/ Thermoelectrics Handbook: Macro to Nano / Thermal conductivity of nanostructured thermoelectric materials by Rowe (2006)10.1103/PhysRevB.76.075207
/ Phys. Rev. B (2007)10.1038/nmat2568
/ Nat. Mater. (2009)10.1063/1.337642
/ J. Appl. Phys. (1986)10.1063/1.1147100
/ Rev. Sci. Instrum. (1996)10.1063/1.367064
/ J. Appl. Phys. (1998)10.1103/PhysRevB.84.235207
/ Phys. Rev. B (2011)10.1063/1.3675467
/ J. Appl. Phys. (2012)10.1063/1.3212673
/ Rev. Sci. Instrum. (2009)10.1115/1.4003545
/ J. Heat Transfer (2011)10.1063/1.58071
/ AIP Conf. Proc. (1999)10.1063/1.2130333
/ Rev. Sci. Instrum. (2005)10.1063/1.360137
/ J. Appl. Phys. (1995)10.1063/1.111856
/ Appl. Phys. Lett. (1994)10.1038/nmat3596
/ Nat. Mater. (2013)10.1038/ncomms2630
/ Nat. Commun. (2013)10.1103/PhysRevLett.18.445
/ Phys. Rev. Lett. (1967)10.1063/1.1819431
/ Rev. Sci. Instrum. (2004)10.1063/1.3006335
/ Rev. Sci. Instrum. (2008)10.1103/PhysRevB.67.054302
/ Phys. Rev. B (2003)10.1002/pssc.200405341
/ Phys. Status Solidi C (2004)10.1103/PhysRev.134.A1058
/ Phys. Rev. (1964)
Dates
Type | When |
---|---|
Created | 12 years, 2 months ago (June 6, 2013, 6:07 p.m.) |
Deposited | 2 years, 1 month ago (July 3, 2023, 1:56 p.m.) |
Indexed | 1 day, 4 hours ago (Aug. 22, 2025, 12:52 a.m.) |
Issued | 12 years, 2 months ago (June 1, 2013) |
Published | 12 years, 2 months ago (June 1, 2013) |
Published Online | 12 years, 2 months ago (June 6, 2013) |
Published Print | 12 years, 2 months ago (June 1, 2013) |
@article{Regner_2013, title={Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions}, volume={84}, ISSN={1089-7623}, url={http://dx.doi.org/10.1063/1.4808055}, DOI={10.1063/1.4808055}, number={6}, journal={Review of Scientific Instruments}, publisher={AIP Publishing}, author={Regner, K. T. and Majumdar, S. and Malen, J. A.}, year={2013}, month=jun }