Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

We have shown theoretically that a combination of cross-section modulation and acoustic mismatch in the core-shell Si/Ge nanowires can lead to a drastic reduction of the thermal conductivity. Our calculations, which utilized two different models–five-parameter Born-von Karman and six-parameter valence force field—for the lattice vibrations, indicate that the room temperature thermal conductivity of Si/Ge cross-section modulated nanowires is almost three orders of magnitude lower than that of bulk Si. Thermal flux in the modulated nanowires is suppressed by an order of magnitude in comparison with generic Si nanowires. The effect is explained by modification of the phonon spectra in modulated nanowires leading to decrease of the phonon group velocities and localization of certain phonon modes in narrow or wide nanowire segments. The thermal conductivity inhibition is achieved in nanowires without additional surface roughness and, thus, potentially reducing degradation of the electron transport. Our results suggest that the acoustically mismatched cross-section modulated nanowires are promising candidates for thermoelectric applications.

Bibliography

Nika, D. L., Cocemasov, A. I., Crismari, D. V., & Balandin, A. A. (2013). Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires. Applied Physics Letters, 102(21).

Authors 4
  1. Denis L. Nika (first)
  2. Alexandr I. Cocemasov (additional)
  3. Dmitrii V. Crismari (additional)
  4. Alexander A. Balandin (additional)
References 61 Referenced 57
  1. {'volume-title': 'Phonons in Nanostructures', 'year': '2001', 'key': '2023061718332891100_c1'} / Phonons in Nanostructures (2001)
  2. 10.1166/jnn.2005.175 / J. Nanosci. Nanotechnol. (2005)
  3. 10.1166/jno.2007.201 / J. Nanoelectron. Optoelectron. (2007)
  4. 10.1016/S1369-7021(12)70117-7 / Mater. Today (2012)
  5. 10.1103/PhysRevB.58.1544 / Phys. Rev. B (1998)
  6. 10.1016/S0749-6036(03)00069-7 / Superlattices Microstruct. (2003)
  7. 10.1021/nl034721i / Nano Lett. (2003)
  8. 10.1103/PhysRevB.68.113308 / Phys. Rev. B (2003)
  9. 10.1103/PhysRevB.72.113311 / Phys. Rev. B (2005)
  10. 10.1103/PhysRevB.51.9930 / Phys. Rev. B (1995)
  11. 10.1103/PhysRevB.40.6428 / Phys. Rev. B (1989)
  12. 10.1103/PhysRevB.48.17194 / Phys. Rev. B (1993)
  13. 10.1063/1.356453 / J. Appl. Phys. (1994)
  14. 10.1103/PhysRevB.57.4687 / Phys. Rev. B (1998)
  15. 10.1088/0953-8984/10/27/010 / J. Phys.: Condens. Matter (1998)
  16. 10.1063/1.1710705 / J. Appl. Phys. (2004)
  17. 10.1063/1.3137186 / Appl. Phys. Lett. (2009)
  18. 10.1063/1.368928 / J. Appl. Phys. (1998)
  19. 10.1006/spmi.1999.0772 / Superlattices Microstruct. (1999)
  20. 10.1063/1.1345515 / J. Appl. Phys. (2001)
  21. 10.1021/nl061554o / Nano Lett. (2006)
  22. 10.1063/1.3007986 / Appl. Phys. Lett. (2008)
  23. 10.1088/1742-6596/92/1/012086 / J. Phys.: Conf. Ser. (2007)
  24. 10.1063/1.1619221 / Appl. Phys. Lett. (2003)
  25. 10.1063/1.1775033 / Appl. Phys. Lett. (2004)
  26. 10.1166/jno.2009.1020 / J. Nanoelectron. Optoelectron. (2009)
  27. 10.1021/nl103718a / Nano Lett. (2011)
  28. 10.1016/j.physleta.2012.07.004 / Phys. Lett. A (2012)
  29. 10.1103/PhysRevLett.108.215901 / Phys. Rev. Lett. (2012)
  30. 10.1038/nature06458 / Nature (2008)
  31. 10.1038/nature06381 / Nature (2008)
  32. 10.1021/nl203356h / Nano Lett. (2011)
  33. 10.1021/nl301204u / Nano Lett. (2012)
  34. 10.1088/0957-4484/23/49/495709 / Nanotechnology (2012)
  35. 10.1016/j.spmi.2005.06.001 / Superlatt. Microstruct. (2005)
  36. 10.1063/1.2977758 / J. Appl. Phys. (2008)
  37. 10.1063/1.2802586 / J. Appl. Phys. (2007)
  38. 10.1063/1.3523360 / Appl. Phys. Lett. (2010)
  39. 10.1186/1556-276X-6-286 / Nanoscale Res. Lett. (2011)
  40. 10.1016/j.electacta.2011.03.126 / Electrochim. Acta (2011)
  41. 10.1038/nnano.2008.359 / Nat. Nanotechnol. (2009)
  42. 10.1063/1.3452378 / J. Appl. Phys. (2010)
  43. 10.1021/nl302891b / Nano Lett. (2013)
  44. 10.1021/nl300121p / Nano Lett. (2013)
  45. 10.1103/PhysRevB.85.205439 / Phys. Rev. B (2012)
  46. 10.1021/nl301230g / Nano Lett. (2012)
  47. 10.1166/jno.2012.1421 / J. Nanoelectron. Optoelectron. (2012)
  48. 10.1166/jno.2012.1313 / J. Nanoelectron. Optoelectron. (2012)
  49. 10.1103/PhysRevB.43.7231 / Phys. Rev. B (1991)
  50. 10.1103/PhysRevB.3.364 / Phys. Rev. B (1971)
  51. 10.1103/PhysRevB.84.165415 / Phys. Rev. B (2011)
  52. 10.1021/nl902720v / Nano Lett. (2010)
  53. 10.1016/0040-6031(93)80426-B / Thermochim. Acta (1993)
  54. {'first-page': '463', 'volume-title': 'Electrons and Phonons', 'year': '2001', 'key': '2023061718332891100_c54'} / Electrons and Phonons (2001)
  55. 10.1103/PhysRev.134.A1058 / Phys. Rev. (1964)
  56. 10.1103/PhysRevB.82.045319 / Phys. Rev. B (2010)
  57. 10.1063/1.3569721 / Appl. Phys. Lett. (2011)
  58. 10.1021/nl903268y / Nano Lett. (2010)
  59. 10.1103/PhysRevLett.102.195901 / Phys. Rev. Lett. (2009)
  60. 10.1063/1.1539905 / Appl. Phys. Lett. (2003)
  61. 10.1038/nmat2752 / Nature Mater. (2010)
Dates
Type When
Created 12 years, 3 months ago (May 29, 2013, 6:14 p.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 2:33 p.m.)
Indexed 1 month ago (July 30, 2025, 7:01 a.m.)
Issued 12 years, 3 months ago (May 27, 2013)
Published 12 years, 3 months ago (May 27, 2013)
Published Online 12 years, 3 months ago (May 29, 2013)
Published Print 12 years, 3 months ago (May 27, 2013)
Funders 0

None

@article{Nika_2013, title={Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires}, volume={102}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4807389}, DOI={10.1063/1.4807389}, number={21}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Nika, Denis L. and Cocemasov, Alexandr I. and Crismari, Dmitrii V. and Balandin, Alexander A.}, year={2013}, month=may }