Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

In this article, we present the extension of the exchange-hole dipole moment model (XDM) of dispersion interactions to the calculation of two-body and three-body dispersion energy terms to any order, 2l-pole oscillator strengths, and polarizabilities. By using the newly-formulated coefficients, we study the relative importance of the higher-order two-body and the leading non-additive three-body (triple-dipole) interactions in gas-phase as well as in condensed systems. We show that the two-body terms up to R−10, but not the terms of higher-order, are essential in the correct description of the dispersion energy, while there are a number of difficulties related to the choice of the damping function, which precludes the use three-body triple-dipole contributions in XDM. We conclude that further study is required before the three-body term can be used in production XDM density-functional calculations and point out the salient problems regarding its use.

Bibliography

Otero-de-la-Roza, A., & Johnson, E. R. (2013). Many-body dispersion interactions from the exchange-hole dipole moment model. The Journal of Chemical Physics, 138(5).

Authors 2
  1. A. Otero-de-la-Roza (first)
  2. Erin R. Johnson (additional)
References 81 Referenced 68
  1. {'volume-title': 'The Theory of Intermolecular Forces', 'year': '1997', 'key': '2023062523300944500_c1'} / The Theory of Intermolecular Forces (1997)
  2. 10.1002/poc.1606 / J. Phys. Org. Chem. (2009)
  3. 10.1557/mrs2010.581 / MRS Bull. (2010)
  4. 10.1088/0953-8984/24/7/073201 / J. Phys.: Condens. Matter (2012)
  5. 10.1103/PhysRevLett.82.2123 / Phys. Rev. Lett. (1999)
  6. 10.1103/PhysRevB.77.045136 / Phys. Rev. B (2008)
  7. 10.1088/0953-8984/21/8/084203 / J. Phys.: Condens. Matter (2009)
  8. 10.1103/PhysRevB.76.125112 / Phys. Rev. B (2007)
  9. 10.1103/PhysRevLett.92.246401 / Phys. Rev. Lett. (2004)
  10. 10.1103/PhysRevLett.93.153004 / Phys. Rev. Lett. (2004)
  11. 10.1103/PhysRevB.75.205131 / Phys. Rev. B (2007)
  12. 10.1016/j.cplett.2008.02.110 / Chem. Phys. Lett. (2008)
  13. 10.1063/1.2992078 / J. Chem. Phys. (2008)
  14. 10.1021/jp050536c / J. Phys. Chem. A (2005)
  15. 10.1021/ct0502763 / J. Chem. Theory Comput. (2006)
  16. 10.1103/PhysRevLett.102.073005 / Phys. Rev. Lett. (2009)
  17. 10.1103/PhysRevLett.108.236402 / Phys. Rev. Lett. (2012)
  18. 10.1002/jcc.20078 / J. Comput. Chem. (2004)
  19. 10.1002/jcc.20495 / J. Comput. Chem. (2006)
  20. 10.1063/1.3382344 / J. Chem. Phys. (2010)
  21. 10.1103/PhysRevLett.103.063004 / Phys. Rev. Lett. (2009)
  22. 10.1063/1.1949201 / J. Chem. Phys. (2005)
  23. 10.1063/1.1884601 / J. Chem. Phys. (2005)
  24. 10.1063/1.2065267 / J. Chem. Phys. (2005)
  25. 10.1063/1.2139668 / J. Chem. Phys. (2006)
  26. 10.1063/1.2190220 / J. Chem. Phys. (2006)
  27. 10.1016/j.cplett.2006.10.094 / Chem. Phys. Lett. (2006)
  28. 10.1063/1.2768530 / J. Chem. Phys. (2007)
  29. 10.1063/1.2795701 / J. Chem. Phys. (2007)
  30. 10.1021/ct800522r / J. Chem. Theory Comput. (2009)
  31. 10.1021/ct900699r / J. Chem. Theory Comput. (2010)
  32. 10.1139/V10-073 / Can. J. Chem. (2010)
  33. 10.1063/1.4705760 / J. Chem. Phys. (2012)
  34. 10.1063/1.3670015 / J. Chem. Phys. (2011)
  35. 10.1063/1.4738961 / J. Chem. Phys. (2012)
  36. 10.1103/RevModPhys.11.1 / Rev. Mod. Phys. (1939)
  37. 10.1063/1.1743991 / J. Chem. Phys. (1957)
  38. 10.1103/PhysRevB.78.045116 / Phys. Rev. B (2008)
  39. 10.1021/jp808767y / J. Phys. Chem. A (2009)
  40. 10.1063/1.3432765 / J. Chem. Phys. (2010)
  41. 10.1073/pnas.1208121109 / Proc. Natl. Acad. Sci. U.S.A. (2012)
  42. 10.1021/ct200541h / J. Chem. Theory Comput. (2011)
  43. 10.1073/pnas.1118245108 / Proc. Natl. Acad. Sci. U.S.A. (2012)
  44. 10.1063/1.2337283 / J. Chem. Phys. (2006)
  45. 10.1080/00268970500224523 / Mol. Phys. (2006)
  46. 10.1039/b211731m / Phys. Chem. Chem. Phys. (2003)
  47. 10.1007/BF00549096 / Theor. Chim. Acta (1977)
  48. 10.1103/PhysRevA.39.3761 / Phys. Rev. A (1989)
  49. 10.1063/1.3676064 / J. Chem. Phys. (2012)
  50. {'key': '2023062523300944500_c50', 'volume-title': 'CRC Handbook of Chemistry and Physics', 'author': 'Lide', 'year': '2010', 'edition': '90th ed.'} / CRC Handbook of Chemistry and Physics by Lide (2010)
  51. 10.1063/1.3672236 / J. Chem. Phys. (2012)
  52. 10.1002/qua.560360862 / Int. J. Quantum Chem., Symp. (1989)
  53. 10.1063/1.457869 / J. Chem. Phys. (1990)
  54. 10.1063/1.455105 / J. Chem. Phys. (1988)
  55. 10.1103/PhysRevA.71.042701 / Phys. Rev. A (2005)
  56. 10.1103/PhysRevA.68.052714 / Phys. Rev. A (2003)
  57. 10.1063/1.3577967 / J. Chem. Phys. (2011)
  58. 10.1063/1.447150 / J. Chem. Phys. (1984)
  59. 10.1103/PhysRevA.86.012505 / Phys. Rev. A (2012)
  60. 10.1103/PhysRev.177.108 / Phys. Rev. (1969)
  61. 10.1088/0370-1298/69/1/307 / Proc. Phys. Soc., London, Sect. A (1956)
  62. 10.1088/0022-3700/3/6/003 / J. Phys. B (1970)
  63. 10.1063/1.3691891 / J. Chem. Phys. (2012)
  64. 10.1063/1.1723844 / J. Chem. Phys. (1943)
  65. {'key': '2023062523300944500_c65', 'first-page': '629', 'volume': '17', 'year': '1943', 'journal-title': 'J. Phys. Math. Soc. Jpn.'} / J. Phys. Math. Soc. Jpn. (1943)
  66. 10.1143/JPSJ.11.1045 / J. Phys. Soc. Jpn. (1956)
  67. 10.1103/PhysRevA.55.2067 / Phys. Rev. A (1997)
  68. 10.1080/01442350601081931 / Int. Rev. Phys. Chem. (2007)
  69. 10.1016/0301-0104(95)00060-2 / Chem. Phys. (1995)
  70. 10.1002/jcc.21759 / J. Comput. Chem. (2011)
  71. 10.1021/ct700105f / J. Chem. Theory Comput. (2008)
  72. 10.1021/ct900545v / J. Chem. Theory Comput. (2010)
  73. 10.1021/jp072106n / J. Phys. Chem. A (2007)
  74. 10.1063/1.3204319 / J. Chem. Phys. (2009)
  75. 10.1103/PhysRevB.33.8800 / Phys. Rev. B (1986)
  76. 10.1103/PhysRevLett.77.3865 / Phys. Rev. Lett. (1996)
  77. 10.1016/j.cpc.2010.04.018 / Comput. Phys. Commun. (2010)
  78. 10.1103/PhysRevLett.101.115503 / Phys. Rev. Lett. (2008)
  79. 10.1103/PhysRevLett.79.1301 / Phys. Rev. Lett. (1997)
  80. 10.1103/PhysRevB.62.5482 / Phys. Rev. B (2000)
  81. See supplementary material at http://dx.doi.org/10.1063/1.4789421 for the tables mentioned in the text. (10.1063/1.4789421)
Dates
Type When
Created 12 years, 6 months ago (Feb. 1, 2013, 7:36 p.m.)
Deposited 2 years, 1 month ago (June 25, 2023, 7:30 p.m.)
Indexed 3 weeks, 3 days ago (July 30, 2025, 6:59 a.m.)
Issued 12 years, 6 months ago (Feb. 1, 2013)
Published 12 years, 6 months ago (Feb. 1, 2013)
Published Online 12 years, 6 months ago (Feb. 1, 2013)
Published Print 12 years, 6 months ago (Feb. 7, 2013)
Funders 0

None

@article{Otero_de_la_Roza_2013, title={Many-body dispersion interactions from the exchange-hole dipole moment model}, volume={138}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4789421}, DOI={10.1063/1.4789421}, number={5}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Otero-de-la-Roza, A. and Johnson, Erin R.}, year={2013}, month=feb }