Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The “ACFD-RPA” correlation energy functional has been widely applied to a variety of systems to successfully predict energy differences, and less successfully predict absolute correlation energies. Here, we present a parameter-free exchange-correlation kernel that systematically improves absolute correlation energies, while maintaining most of the good numerical properties that make the ACFD-RPA numerically tractable. The radial exchange hole kernel is constructed to approximate the true exchange kernel via a carefully weighted, easily computable radial averaging. Correlation energy errors of atoms with 2–18 electrons show a 13-fold improvement over the RPA and a threefold improvement over the related Petersilka, Gossmann, and Gross kernel, for a mean absolute error of 13 mHa or 5%. The average error is small compared to all but the most difficult to evaluate kernels. van der Waals C6 coefficients are less well predicted, but still show improvements on the RPA, especially for highly polarisable Li and Na.

Bibliography

Gould, T. (2012). Communication: Beyond the random phase approximation on the cheap: Improved correlation energies with the efficient “radial exchange hole” kernel. The Journal of Chemical Physics, 137(11).

Authors 1
  1. Tim Gould (first)
References 44 Referenced 33
  1. 10.1103/PhysRev.136.B864 / Phys. Rev. (1964)
  2. 10.1103/PhysRev.140.A1133 / Phys. Rev. (1965)
  3. 10.1103/PhysRev.90.317 / Phys. Rev. (1953)
  4. 10.1103/PhysRevA.14.36 / Phys. Rev. A (1976)
  5. 10.1016/0009-2614(94)01027-7 / Chem. Phys. Lett. (1994)
  6. 10.1002/(SICI)1096-987X(199605)17:7<841::AID-JCC8>3.0.CO;2-S / J. Comput. Chem. (1996)
  7. 10.1088/0953-8984/24/7/073201 / J. Phys.: Condens. Matter (2012)
  8. 10.1007/s00214-011-1084-8 / Theor. Chim. Acta (2012)
  9. 10.1007/s10853-012-6570-4 / J. Mater. Sci. (2012)
  10. 10.1103/PhysRevLett.82.2123 / Phys. Rev. Lett. (1999)
  11. 10.1103/PhysRevB.64.195120 / Phys. Rev. B (2001)
  12. 10.1103/PhysRevB.66.245103 / Phys. Rev. B (2002)
  13. 10.1103/PhysRevB.65.235109 / Phys. Rev. B (2002)
  14. 10.1103/PhysRevB.77.045136 / Phys. Rev. B (2008)
  15. 10.1103/PhysRevLett.103.056401 / Phys. Rev. Lett. (2009)
  16. 10.1103/PhysRevB.81.115126 / Phys. Rev. B (2010)
  17. 10.1103/PhysRevLett.105.196401 / Phys. Rev. Lett. (2010)
  18. 10.1038/nmat2806 / Nature Mater. (2010)
  19. 10.1063/1.3250347 / J. Chem. Phys. (2009)
  20. 10.1063/1.2795707 / J. Chem. Phys. (2007)
  21. 10.1103/PhysRevB.59.10461 / Phys. Rev. B (1999)
  22. 10.1103/PhysRevLett.45.204 / Phys. Rev. Lett. (1980)
  23. 10.1103/PhysRevB.62.10038 / Phys. Rev. B (2000)
  24. 10.1002/qua.560560417 / Int. J. Quantum Chem. (1995)
  25. 10.1002/qua.20259 / Int. J. Quantum Chem. (2004)
  26. 10.1103/PhysRevA.82.032502 / Phys. Rev. A (2010)
  27. 10.1103/RevModPhys.36.844 / Rev. Mod. Phys. (1964)
  28. 10.1103/PhysRevLett.76.1212 / Phys. Rev. Lett. (1996)
  29. 10.1063/1.1884112 / J. Chem. Phys. (2005)
  30. 10.1103/PhysRevB.78.115107 / Phys. Rev. B (2008)
  31. 10.1063/1.3290947 / J. Chem. Phys. (2010)
  32. 10.1080/00268970903476662 / Mol. Phys. (2010)
  33. 10.1063/1.3697845 / J. Chem. Phys. (2012)
  34. 10.1103/PhysRevB.66.081108 / Phys. Rev. B (2002)
  35. 10.1103/PhysRevA.85.062504 / Phys. Rev. A (2012)
  36. 10.1103/PhysRevA.85.012517 / Phys. Rev. A (2012)
  37. 10.1103/PhysRevB.86.081103 / Phys. Rev. B (2012)
  38. 10.1103/PhysRevA.45.101 / Phys. Rev. A (1992)
  39. {'key': '2023062606232588500_c30'}
  40. T. Gould and J. F. Dobson, e-print arXiv:1206.6158 [physics.atom-ph].
  41. 10.1103/PhysRevA.47.3649 / Phys. Rev. A (1993)
  42. 10.1063/1.449203 / J. Chem. Phys. (1985)
  43. 10.1103/PhysRevA.85.042507 / Phys. Rev. A (2012)
  44. 10.1063/1.3676174 / J. Chem. Phys. (2012)
Dates
Type When
Created 12 years, 11 months ago (Sept. 21, 2012, 7:01 p.m.)
Deposited 2 years, 2 months ago (June 26, 2023, 2:23 a.m.)
Indexed 4 weeks, 2 days ago (Aug. 2, 2025, 1:08 a.m.)
Issued 12 years, 11 months ago (Sept. 21, 2012)
Published 12 years, 11 months ago (Sept. 21, 2012)
Published Online 12 years, 11 months ago (Sept. 21, 2012)
Published Print 12 years, 11 months ago (Sept. 21, 2012)
Funders 0

None

@article{Gould_2012, title={Communication: Beyond the random phase approximation on the cheap: Improved correlation energies with the efficient “radial exchange hole” kernel}, volume={137}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4755286}, DOI={10.1063/1.4755286}, number={11}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Gould, Tim}, year={2012}, month=sep }