Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The dynamic disorder model for charge carrier transport in organic semiconductors has been extensively studied in recent years. Although it is successful on determining the value of bandlike mobility in the organic crystalline materials, the incoherent hopping, the typical transport characteristic in amorphous molecular semiconductors, cannot be described. In this work, the decoherence process is taken into account via a phenomenological parameter, say, decoherence time, and the projective and Monte Carlo method are applied for this model to determine the waiting time and thus the diffusion coefficient. It is obtained that the type of transport is changed from coherent to incoherent with a sufficiently short decoherence time, which indicates the essential role of decoherence time in determining the type of transport in organics. We have also discussed the spatial extent of carriers for different decoherence time, and the transition from delocalization (carrier resides in about 10 molecules) to localization is observed. Based on the experimental results of spatial extent, we estimate that the decoherence time in pentacene has the order of 1 ps. Furthermore, the dependence of diffusion coefficient on decoherence time is also investigated, and corresponding experiments are discussed.

Bibliography

Yao, Y., Si, W., Hou, X., & Wu, C.-Q. (2012). Monte Carlo simulation based on dynamic disorder model in organic semiconductors: From coherent to incoherent transport. The Journal of Chemical Physics, 136(23).

Authors 4
  1. Yao Yao (first)
  2. Wei Si (additional)
  3. Xiaoyuan Hou (additional)
  4. Chang-Qin Wu (additional)
References 49 Referenced 30
  1. 10.1021/cr050140x / Chem. Rev. (2007)
  2. 10.1038/nmat2825 / Nature Mater. (2010)
  3. 10.1103/PhysRevLett.107.066601 / Phys. Rev. Lett. (2011)
  4. 10.1103/PhysRevLett.42.1698 / Phys. Rev. Lett. (1979)
  5. 10.1103/PhysRevB.70.115311 / Phys. Rev. B (2004)
  6. 10.1103/PhysRevLett.93.086602 / Phys. Rev. Lett. (2004)
  7. 10.1016/S0379-6779(02)00398-3 / Synth. Met. (2003)
  8. 10.1103/PhysRevB.80.115325 / Phys. Rev. B (2009)
  9. 10.1103/PhysRevLett.97.256603 / Phys. Rev. Lett. (2006)
  10. 10.1103/PhysRevB.82.155204 / Phys. Rev. B (2010)
  11. 10.1103/PhysRevLett.96.086601 / Phys. Rev. Lett. (2006)
  12. 10.1063/1.3167406 / J. Chem. Phys. (2009)
  13. 10.1103/PhysRevB.83.081202 / Phys. Rev. B (2011)
  14. 10.1103/PhysRevLett.103.266601 / Phys. Rev. Lett. (2009)
  15. 10.1063/1.2894840 / J. Chem. Phys. (2008)
  16. 10.1103/PhysRevB.79.235206 / Phys. Rev. B (2009)
  17. 10.1103/PhysRevB.69.075211 / Phys. Rev. B (2004)
  18. 10.1103/PhysRevB.79.035113 / Phys. Rev. B (2009)
  19. 10.1039/b913183c / Phys. Chem. Chem. Phys. (2010)
  20. 10.1103/PhysRevLett.93.216407 / Phys. Rev. Lett. (2004)
  21. 10.1103/PhysRevB.75.235106 / Phys. Rev. B (2007)
  22. 10.1002/cphc.201000182 / ChemPhysChem (2010)
  23. 10.1063/1.470177 / J. Chem. Phys. (1995)
  24. 10.1002/pssb.2221750102 / Phys. Status Solidi B (1993)
  25. 10.1103/PhysRevB.75.153201 / Phys. Rev. B (2007)
  26. 10.1103/PhysRevLett.94.206601 / Phys. Rev. Lett. (2005)
  27. 10.1103/PhysRevB.72.155206 / Phys. Rev. B (2005)
  28. 10.1088/0022-3727/42/3/035103 / J. Phys. D (2009)
  29. 10.1103/PhysRevLett.103.036402 / Phys. Rev. Lett. (2009)
  30. 10.1103/PhysRevLett.105.266602 / Phys. Rev. Lett. (2010)
  31. {'volume-title': 'Electronic Properties of Doped Semiconductors', 'year': '1984', 'key': '2023070202460875400_c27'} / Electronic Properties of Doped Semiconductors (1984)
  32. 10.1103/PhysRevB.57.12964 / Phys. Rev. B (1998)
  33. 10.1103/PhysRevB.67.155209 / Phys. Rev. B (2003)
  34. 10.1103/PhysRevB.68.075205 / Phys. Rev. B (2003)
  35. 10.1063/1.3276693 / Appl. Phys. Lett. (2009)
  36. 10.1103/PhysRevB.81.045313 / Phys. Rev. B (2010)
  37. 10.1103/PhysRevLett.32.303 / Phys. Rev. Lett. (1974)
  38. 10.1103/PhysRevB.4.2612 / Phys. Rev. B (1971)
  39. 10.1103/PhysRevLett.100.056601 / Phys. Rev. Lett. (2008)
  40. {'volume-title': 'Decoherence and the Quantum-to-Classical Transition', 'year': '2010', 'key': '2023070202460875400_c34'} / Decoherence and the Quantum-to-Classical Transition (2010)
  41. 10.1038/35024031 / Nature (London) (2000)
  42. 10.1016/S0301-0104(02)00565-7 / Chem. Phys. (2002)
  43. 10.1063/1.475040 / J. Chem. Phys. (1997)
  44. 10.1088/0953-8984/20/23/235203 / J. Phys: Condens. Matter (2008)
  45. 10.1063/1.459170 / J. Chem. Phys. (1990)
  46. 10.1063/1.3604561 / J. Chem. Phys. (2011)
  47. 10.1103/PhysRevB.70.064303 / Phys. Rev. B (2004)
  48. 10.1103/PhysRevLett.107.066605 / Phys. Rev. Lett. (2011)
  49. 10.1016/j.synthmet.2010.11.049 / Synth. Met. (2011)
Dates
Type When
Created 13 years, 2 months ago (June 19, 2012, 6:46 p.m.)
Deposited 2 years, 1 month ago (July 1, 2023, 10:46 p.m.)
Indexed 4 weeks ago (July 30, 2025, 6:59 a.m.)
Issued 13 years, 2 months ago (June 19, 2012)
Published 13 years, 2 months ago (June 19, 2012)
Published Online 13 years, 2 months ago (June 19, 2012)
Published Print 13 years, 2 months ago (June 21, 2012)
Funders 1
  1. National Natural Science Foundation of China 10.13039/501100001809

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards2
    1. 2012CB921400
    2. 2009CB29204

@article{Yao_2012, title={Monte Carlo simulation based on dynamic disorder model in organic semiconductors: From coherent to incoherent transport}, volume={136}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.4729310}, DOI={10.1063/1.4729310}, number={23}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Yao, Yao and Si, Wei and Hou, Xiaoyuan and Wu, Chang-Qin}, year={2012}, month=jun }