Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

The unique properties of surface plasmon polaritons, such as strong field confinement and local field enhancement effects, make them ideal candidates to enhance and shape the emission of luminescent nanoparticles. Of these nanoparticles, quantum dots are highly versatile, suitable for vastly different applications due to their size and material tunability. In many cases however, the emission wavelength of the quantum dots is fixed after manufacturing, allowing no control over the in situ emission properties. Here, we show fully optical, in situ tunability of the emission wavelength of quantum dots, with shifts of over 30 nm, employing surface plasmon polaritons to control the emission wavelength.

Bibliography

Moerland, R. J., Rekola, H. T., Sharma, G., Eskelinen, A.-P., Väkeväinen, A. I., & Törmä, P. (2012). Surface plasmon polariton-controlled tunable quantum-dot emission. Applied Physics Letters, 100(22).

Authors 6
  1. R. J. Moerland (first)
  2. H. T. Rekola (additional)
  3. G. Sharma (additional)
  4. A.-P. Eskelinen (additional)
  5. A. I. Väkeväinen (additional)
  6. P. Törmä (additional)
References 30 Referenced 11
  1. 10.1063/1.437121 / J. Chem. Phys. (1978)
  2. 10.1103/PhysRevLett.94.023005 / Phys. Rev. Lett. (2005)
  3. 10.1021/nl0715847 / Nano Lett. (2007)
  4. 10.1021/nl062901x / Nano Lett. (2007)
  5. 10.1103/PhysRevLett.103.053602 / Phys. Rev. Lett. (2009)
  6. 10.1103/PhysRevB.55.7249 / Phys. Rev. B (1997)
  7. 10.1063/1.2392827 / Appl. Phys. Lett. (2006)
  8. 10.1021/nl903455z / Nano Lett. (2010)
  9. {'volume-title': 'Surface Plasmons on Smooth and Rough Surfaces and on Gratings', 'year': '1988', 'key': '2023061803120246300_c9'} / Surface Plasmons on Smooth and Rough Surfaces and on Gratings (1988)
  10. 10.1038/nature01937 / Nature (London) (2003)
  11. 10.1103/PhysRevLett.101.226806 / Phys. Rev. Lett. (2008)
  12. 10.1021/nl901314u / Nano Lett. (2009)
  13. 10.1364/OL.35.001197 / Opt. Lett. (2010)
  14. 10.1364/OE.18.018633 / Opt. Express (2010)
  15. 10.1126/science.1191922 / Science (2010)
  16. 10.1021/nl103228b / Nano Lett. (2011)
  17. 10.1038/nbt994 / Nat. Biotechnol. (2004)
  18. 10.1021/bc034153y / Bioconjugate Chem. (2004)
  19. 10.1126/science.1088525 / Science (2003)
  20. 10.1038/nature03119 / Nature (London) (2004)
  21. 10.1126/science.278.5346.2114 / Science (1997)
  22. 10.1126/science.1104274 / Science (2005)
  23. 10.1126/science.271.5251.933 / Science (1996)
  24. 10.1021/nl200772d / Nano Lett. (2011)
  25. See supplementary material at http://dx.doi.org/10.1063/1.4724327 for details on sample fabrication and measurement methods, for s-polarized reference measurements and for details on the temperature calculation.
  26. 10.1016/0031-8914(67)90062-6 / Physica (1967)
  27. 10.1088/0957-4484/22/18/185503 / Nanotechnology (2011)
  28. 10.1103/PhysRevB.71.235409 / Phys. Rev. B (2005)
  29. 10.1063/1.2357856 / Appl. Phys. Lett. (2006)
  30. M. T. Sheldon and H. A. Atwater, e-print arXiv:1202.0301v1 [cond-mat.mes-hall] (2012).
Dates
Type When
Created 13 years, 2 months ago (June 4, 2012, 9:53 a.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 11:12 p.m.)
Indexed 3 weeks, 5 days ago (July 30, 2025, 6:58 a.m.)
Issued 13 years, 2 months ago (May 28, 2012)
Published 13 years, 2 months ago (May 28, 2012)
Published Online 13 years, 2 months ago (June 1, 2012)
Published Print 13 years, 2 months ago (May 28, 2012)
Funders 0

None

@article{Moerland_2012, title={Surface plasmon polariton-controlled tunable quantum-dot emission}, volume={100}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.4724327}, DOI={10.1063/1.4724327}, number={22}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Moerland, R. J. and Rekola, H. T. and Sharma, G. and Eskelinen, A.-P. and Väkeväinen, A. I. and Törmä, P.}, year={2012}, month=may }