Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The Mori–Zwanzig memory function formalism is used to determine the behavior of the solute reactive flux in the energy diffusion regime. We show formally that in the case of slow vibrational energy relaxation the reactive flux can exhibit two plateaus corresponding to two phenomenological rate constants. The second of these plateaus corresponds to the overall solute reaction rate, while the first plateau is a ‘‘false’’ plateau. Such a scenario is equated with a Lindemann-type reaction phenomenology corresponding to two different energy relaxation mechanisms. Time scale arguments are used to show that such a scenario exists in an example of a cubic reaction coordinate coupled to a slow Gaussian friction bath. The geminate recombination of I2 in solution provides experimental confirmation that such behavior also occurs in real chemical systems.

Bibliography

Tucker, S. C. (1994). The reactive flux method in the energy diffusion regime. I. Effect of slow vibrational energy relaxation. The Journal of Chemical Physics, 101(3), 2006–2015.

Authors 1
  1. Susan C. Tucker (first)
References 60 Referenced 21
  1. 10.1063/1.436049 / J. Chem. Phys. (1978)
  2. 10.1063/1.438028 / J. Chem. Phys. (1979)
  3. 10.1016/0009-2614(80)80487-8 / Chem. Phys. Lett. (1980)
  4. {'key': '2024021101000909900_r4'}
  5. {'key': '2024021101000909900_r5'}
  6. {'key': '2024021101000909900_r6'}
  7. 10.1021/j100324a007 / J. Phys. Chem. (1988)
  8. 10.1063/1.455864 / J. Chem. Phys. (1989)
  9. 10.1063/1.456837 / J. Chem. Phys. (1989)
  10. {'key': '2024021101000909900_r10', 'first-page': '5809', 'volume': '95', 'year': '1991', 'journal-title': 'J. Chem. Phys.'} / J. Chem. Phys. (1991)
  11. 10.1063/1.465044 / J. Chem. Phys. (1993)
  12. {'key': '2024021101000909900_r12'}
  13. 10.1063/1.460949 / J. Chem. Phys. (1991)
  14. 10.1146/annurev.pc.39.100188.002013 / Annu. Rev. Phys. Chem. (1988)
  15. 10.1063/1.450578 / J. Chem. Phys. (1986)
  16. 10.1063/1.450938 / J. Chem. Phys. (1986)
  17. 10.1143/PTP.33.423 / Prog. Theor. Phys. (Kyoto) (1965)
  18. {'key': '2024021101000909900_r18'}
  19. {'key': '2024021101000909900_r19'}
  20. {'key': '2024021101000909900_r20'}
  21. 10.1063/1.464723 / J. Chem. Phys. (1993)
  22. 10.1063/1.462720 / J. Chem. Phys. (1992)
  23. 10.1063/1.1724384 / Phys. Fluids (1959)
  24. {'key': '2024021101000909900_r24', 'first-page': '297', 'volume': '70', 'year': '1988', 'journal-title': 'Adv. Chem. Phys.'} / Adv. Chem. Phys. (1988)
  25. {'key': '2024021101000909900_r25', 'first-page': '487', 'volume': '47', 'year': '1981', 'journal-title': 'Adv. Chem. Phys.'} / Adv. Chem. Phys. (1981)
  26. 10.1063/1.455341 / J. Chem. Phys. (1988)
  27. {'key': '2024021101000909900_r27'}
  28. 10.1063/1.444019 / J. Chem. Phys. (1982)
  29. 10.1063/1.445829 / J. Chem. Phys. (1983)
  30. {'key': '2024021101000909900_r30'}
  31. 10.1021/j100387a002 / J. Phys. Chem. (1990)
  32. 10.1021/ja00001a014 / J. Am. Chem. Soc. (1991)
  33. 10.1063/1.451576 / J. Chem. Phys. (1986)
  34. 10.1021/ja00158a008 / J. Am. Chem. Soc. (1990)
  35. 10.1063/1.440485 / J. Chem. Phys. (1980)
  36. {'key': '2024021101000909900_r36'}
  37. {'key': '2024021101000909900_r37', 'first-page': '250', 'volume': '62', 'year': '1990', 'journal-title': 'Rev. Mod. Phys.'} / Rev. Mod. Phys. (1990)
  38. 10.1002/9780470140154.ch1 / Adv. Chem. Phys. (1967)
  39. 10.1063/1.444277 / J. Chem. Phys. (1982)
  40. 10.1063/1.445535 / J. Chem. Phys. (1983)
  41. {'key': '2024021101000909900_r41'}
  42. 10.1088/0034-4885/29/1/306 / Rep. Prog. Phys. (1966)
  43. 10.1021/j100110a022 / J. Phys. Chem. (1993)
  44. 10.1103/PhysRevLett.61.1683 / Phys. Rev. Lett. (1988)
  45. {'key': '2024021101000909900_r45'}
  46. {'key': '2024021101000909900_r46', 'first-page': '5336', 'volume': '41', 'year': '1990', 'journal-title': 'Phys. Rev. A'} / Phys. Rev. A (1990)
  47. {'key': '2024021101000909900_r47'}
  48. {'key': '2024021101000909900_r48', 'first-page': '5', 'volume': '113', 'year': '1985', 'journal-title': 'Chem. Phys. Lett.'} / Chem. Phys. Lett. (1985)
  49. 10.1063/1.448505 / J. Chem. Phys. (1985)
  50. 10.1016/0009-2614(84)80306-1 / Chem. Phys. Lett. (1984)
  51. 10.1063/1.447179 / J. Chem. Phys. (1984)
  52. {'key': '2024021101000909900_r52'}
  53. 10.1063/1.440484 / J. Chem. Phys. (1980)
  54. 10.1063/1.451009 / J. Chem. Phys. (1986)
  55. {'key': '2024021101000909900_r55'}
  56. 10.1039/TF9221700598 / Trans. Faraday Soc. (1922)
  57. {'key': '2024021101000909900_r57'}
  58. {'key': '2024021101000909900_r58'}
  59. 10.1063/1.454318 / J. Chem. Phys. (1988)
  60. 10.1063/1.458647 / J. Chem. Phys. (1990)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 8:34 a.m.)
Deposited 1 year, 6 months ago (Feb. 10, 2024, 8 p.m.)
Indexed 1 year, 6 months ago (Feb. 11, 2024, 6:42 a.m.)
Issued 31 years ago (Aug. 1, 1994)
Published 31 years ago (Aug. 1, 1994)
Published Print 31 years ago (Aug. 1, 1994)
Funders 0

None

@article{Tucker_1994, title={The reactive flux method in the energy diffusion regime. I. Effect of slow vibrational energy relaxation}, volume={101}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.467710}, DOI={10.1063/1.467710}, number={3}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Tucker, Susan C.}, year={1994}, month=aug, pages={2006–2015} }