Abstract
We present a new method for solving the Redfield equation, which describes the evolution of the reduced density matrix of a multilevel quantum-mechanical system interacting with a thermal bath. The method is based on a new decomposition of the Redfield relaxation tensor that makes possible its direct application to the density matrix without explicit construction of the full tensor. In the resulting expressions, only ordinary matrices are involved and so any quantum system whose Hamiltonian can be diagonalized can be treated with the full Redfield theory. To efficiently solve the equation of motion for the density matrix, we introduce a generalization of the short-iterative-Lanczos propagator. Together, these contributions allow the complete Redfield theory to be applied to significantly larger systems than was previously possible. Several model calculations are presented to illustrate the methodology, including one example with 172 quantum states.
References
67
Referenced
257
10.1021/j100319a003
/ J. Chem. Phys. (1988)10.1016/0021-9991(91)90137-A
/ J. Comput. Phys. (1991){'key': '2024021105090060600_r3', 'first-page': '10', 'volume': '95', 'year': '1991', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. (1991)10.1063/1.464764
/ J. Chem. Phys. (1993)10.1016/0009-2614(93)80043-O
/ Chem. Phys. Lett. (1993){'key': '2024021105090060600_r6'}
10.1016/0009-2614(93)89135-5
/ Chem. Phys. Lett. (1993)10.1063/1.464739
/ J. Chem. Phys. (1993)10.1103/PhysRevA.44.2352
/ Phys. Rev. A (1991)10.1016/0010-4655(91)90265-M
/ Comp. Phys. Commun. (1991)10.1021/j100356a025
/ J. Phys. Chem. (1989)10.1063/1.457242
/ J. Chem. Phys. (1989){'key': '2024021105090060600_r13', 'first-page': '10', 'volume': '95', 'year': '1991', 'journal-title': 'J. Phys. Chem.'}
/ J. Phys. Chem. (1991)10.1063/1.464683
/ J. Chem. Phys. (1993)10.1063/1.459596
/ J. Chem. Phys. (1990)10.1063/1.459170
/ J. Chem. Phys. (1990)10.1063/1.461470
/ J. Chem. Phys. (1991)10.1016/0010-4655(91)90272-M
/ Comp. Phys. Commun. (1991)10.1103/RevModPhys.29.74
/ Rev. Mod. Phys. (1957){'key': '2024021105090060600_r20'}
{'key': '2024021105090060600_r21'}
10.1147/rd.11.0019
/ IBM J. Res. Dev. (1957)10.1016/B978-1-4832-3114-3.50007-6
/ Adv. Magn. Reson. (1965)10.1103/PhysRev.89.728
/ Phys. Rev. (1953){'key': '2024021105090060600_r25'}
{'key': '2024021105090060600_r26', 'first-page': '98', 'volume': '134', 'year': '1964', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. (1964)10.1063/1.1676468
/ J. Chem. Phys. (1971)10.1063/1.430417
/ J. Chem. Phys. (1975){'key': '2024021105090060600_r29'}
10.1016/0378-4371(89)90121-0
/ Physica A (1989){'key': '2024021105090060600_r31'}
10.1063/1.437512
/ J. Chem. Phys. (1979)10.1016/0009-2614(80)80505-7
/ Chem. Phys. Lett. (1980)10.1063/1.440827
/ J. Chem. Phys. (1981)10.1073/pnas.79.6.2138
/ Proc. Natl. Acad. Sci. USA (1982){'key': '2024021105090060600_r36'}
10.1063/1.462858
/ J. Chem. Phys. (1992)10.1063/1.463566
/ J. Chem. Phys. (1992)10.1016/0009-2614(92)85054-E
/ Chem. Phys. Lett. (1992)10.1063/1.451548
/ J. Chem. Phys. (1986)10.1090/qam/42792
/ Q. Appl. Math. (1951)10.1016/0024-3795(80)90169-X
/ Lin. Alg. Appl. (1980)10.1007/BF01060992
/ J. Sci. Comp. (1989)10.1088/0305-4470/25/5/031
/ J. Phys. A (1992)10.1063/1.522979
/ J. Math. Phys. (1976)10.1007/BF01608499
/ Commun. Math Phys. (1976){'key': '2024021105090060600_r47'}
10.1103/RevModPhys.52.569
/ Rev. Mod. Phys. (1980)10.1063/1.463831
/ J. Chem. Phys. (1992)10.1063/1.465797
/ J. Chem. Phys. (1993){'key': '2024021105090060600_r51'}
{'key': '2024021105090060600_r52', 'first-page': '487', 'volume': '47', 'year': '1981', 'journal-title': 'Adv. Chem. Phys.'}
/ Adv. Chem. Phys. (1981)10.1063/1.448136
/ J. Chem. Phys. (1984){'key': '2024021105090060600_r54'}
10.1021/ar00078a004
/ Acc. Chem. Res. (1982)10.1021/j100161a043
/ J. Chem. Phys. (1991)10.1063/1.460565
/ J. Chem. Phys. (1991)10.1103/RevModPhys.59.1
/ Rev. Mod. Phys. (1987)10.1063/1.455488
/ J. Chem. Phys. (1988)10.1021/j100357a010
/ J. Phys. Chem. (1989)10.1063/1.447055
/ J. Chem. Phys. (1984)10.1063/1.449469
/ J. Chem. Phys. (1985)10.1063/1.449686
/ J. Chem. Phys. (1985){'key': '2024021105090060600_r64'}
10.1126/science.2675313
/ Science (1989)10.1063/1.462981
/ J. Chem. Phys. (1992)10.1063/1.463327
/ J. Chem. Phys. (1992)
Dates
Type | When |
---|---|
Created | 23 years ago (July 26, 2002, 8:12 a.m.) |
Deposited | 1 year, 6 months ago (Feb. 11, 2024, 12:09 a.m.) |
Indexed | 1 month ago (July 19, 2025, 11:27 p.m.) |
Issued | 31 years, 4 months ago (April 1, 1994) |
Published | 31 years, 4 months ago (April 1, 1994) |
Published Print | 31 years, 4 months ago (April 1, 1994) |
@article{Pollard_1994, title={Solution of the Redfield equation for the dissipative quantum dynamics of multilevel systems}, volume={100}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.467222}, DOI={10.1063/1.467222}, number={7}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Pollard, W. Thomas and Friesner, Richard A.}, year={1994}, month=apr, pages={5054–5065} }