Abstract
In studying the VH depolarized Rayleigh light-scattering spectrum of orthoterphenyl we have separated an ‘‘intermediate’’ line with almost temperature-independent halfwidth of 50 GHz from both the narrower rotational line with strongly temperature-dependent halfwidth and the broader base line associated with short-range overlap interactions. The integrated intensity IVH of the intermediate line decreases by a factor of 25 as the temperature decreases over a range for which the viscosity increases by 11 orders of magnitude. It appears that the extrapolated value of (IVH/ρ2)1/2 for this line vanishes as T→T0, where ρ is the density and T0 is the ideal liquid–glass transition temperature established by fitting a Vogel–Fulcher relation to the viscosity. We associate this intermediate line with dipole–induced-dipole interactions; its intensity is then given by an equal-time correlation function involving two-, three-, and four-body interactions. Because dipole interactions are quite long range, this correlation function may be a good probe of local molecular order, and IVH may thus be a good molecular structural (thermodynamic) indicator (order parameter) of the liquid–glass transition, the first such indicator identified.
References
32
Referenced
23
{'key': '2024021011204552200_r1'}
{'key': '2024021011204552200_r2'}
10.1063/1.1696442
/ J. Chem. Phys. (1965)10.1209/0295-5075/6/6/010
/ Europhys. Lett. (1988)10.1051/jphys:01968002904028700
/ J. Phys. (Paris) (1968)10.1051/jphys:01977003806064100
/ J. Phys. (Paris) (1977){'key': '2024021011204552200_r6'}
10.1021/cr60135a002
/ Chem. Rev. (1948){'key': '2024021011204552200_r8'}
10.1103/PhysRevLett.21.661
/ Phys. Rev. Lett. (1968)10.1103/PhysRevLett.20.439
/ Phys. Rev. Lett. (1968){'key': '2024021011204552200_r9b'}
10.1103/PhysRevA.22.2230
/ Phys. Rev. A (1980)10.1103/PhysRevA.25.773
/ Phys. Rev. A (1982)10.1016/0022-2860(90)80472-V
/ J. Mol. Struct. (1990)10.1063/1.459058
/ J. Chem. Phys. (1990)10.1103/PhysRevLett.27.1493
/ Phys. Rev. Lett. (1971)10.1103/PhysRevLett.30.591
/ Phys. Rev. Lett. (1973)10.1063/1.1676706
/ J. Chem. Phys. (1971){'key': '2024021011204552200_r15'}
{'key': '2024021011204552200_r16'}
10.1111/j.1749-6632.1976.tb39701.x
/ Ann. N. Y. Acad. Sci. (1976)10.1016/0009-2614(77)85333-5
/ Chem. Phys. Lett. (1977)10.1080/00268977800101631
/ Mol. Phys. (1978)10.1080/00268978500101831
/ Mol. Phys. (1985)10.1080/00268978900100901
/ Mol. Phys. (1989)10.1063/1.438231
/ J. Chem. Phys. (1979){'key': '2024021011204552200_r22'}
{'key': '2024021011204552200_r23'}
10.1063/1.1840842
/ J. Chem. Phys. (1967)10.1016/0301-0104(90)80142-K
/ Chem. Phys. (1990)10.1103/PhysRevB.43.8070
/ Phys. Rev. B (1991)
@article{Kivelson_1991, title={A possible molecular structural indicator of the liquid–glass transition}, volume={95}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.460990}, DOI={10.1063/1.460990}, number={3}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Kivelson, Daniel and Steffen, Werner and Meier, Gerhard and Patkowski, Adam}, year={1991}, month=aug, pages={1943–1949} }