Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The properties of small neutral and positively charged sodium clusters and the fragmentation dynamics of Na++4 are investigated using a simulation technique which combines classical molecular dynamics on the electronic Born–Oppenheimer ground-state potential surface with electronic structure calculations via the local spin-density functional method. Results for the optimal energies and structures of Nan and Na+n (n≤4) are in quantitative agreement with previous studies and experimental data. Fission of Na++4 on its ground state Born–Oppenheimer potential-energy surface, following sudden ionization of selected configurations of an Na+4 (or Na4) cluster, whose vibrational energy content corresponds to 300 K, is found to occur on a picosecond time scale. The preferred fission channel is found to be Na+3+Na+, with an interfragment relative translational kinetic energy of ∼2 eV, and a vibrationally excited Na+3. The dynamics of the fragmentation process is analyzed.

Bibliography

Barnett, R. N., Landman, U., Nitzan, A., & Rajagopal, G. (1991). Born–Oppenheimer dynamics using density-functional theory: Equilibrium and fragmentation of small sodium clusters. The Journal of Chemical Physics, 94(1), 608–616.

Authors 4
  1. R. N. Barnett (first)
  2. Uzi Landman (additional)
  3. Abraham Nitzan (additional)
  4. Gunaretnam Rajagopal (additional)
References 85 Referenced 80
  1. {'key': '2024021010530722200_r1'}
  2. {'key': '2024021010530722200_r1a'}
  3. 10.1002/ijch.199000010 / Israel J. Chem. (1990)
  4. {'key': '2024021010530722200_r2a'}
  5. {'key': '2024021010530722200_r2b'}
  6. 10.1146/annurev.pc.37.100186.002153 / Annu. Rev. Phys. Chem. (1986)
  7. {'key': '2024021010530722200_r2d'}
  8. 10.1016/S0081-1947(08)60691-8 / Solid State Phys. (1987)
  9. 10.1103/PhysRevLett.65.748 / Phys. Rev. Lett. (1990)
  10. {'key': '2024021010530722200_r3b'}
  11. 10.1016/0009-2614(90)85218-2 / Chem. Phys. Lett. (1990)
  12. 10.1103/PhysRevB.32.1359 / Phys. Rev. B (1985)
  13. 10.1103/PhysRevB.38.4273 / Phys. Rev. B (1988)
  14. 10.1103/PhysRevLett.59.1805 / Phys. Rev. Lett. (1987)
  15. 10.1016/0009-2614(89)85233-9 / Chem. Phys. Lett. (1989)
  16. 10.1016/0009-2614(90)87044-R / Chem. Phys. Lett. (1990)
  17. 10.1103/PhysRevB.31.3486 / Phys. Rev. B (1985)
  18. 10.1103/PhysRevB.31.6360 / Phys. Rev. B (1985)
  19. 10.1103/PhysRevB.35.7325 / Phys. Rev. B (1987)
  20. 10.1103/PhysRevLett.63.255 / Phys. Rev. Lett. (1989)
  21. 10.1103/PhysRevB.41.6088 / Phys. Rev. B (1990)
  22. 10.1016/0009-2614(90)87045-S / Chem. Phys. Lett. (1990)
  23. 10.1016/0009-2614(90)87084-5 / Chem. Phys. Lett. (1990)
  24. {'key': '2024021010530722200_r14'}
  25. 10.1103/PhysRevLett.63.1368 / Phys. Rev. Lett. (1989)
  26. 10.1063/1.456675 / J. Chem. Phys. (1989)
  27. 10.1103/PhysRevLett.64.2893 / Phys. Rev. Lett. (1990)
  28. 10.1016/0375-9601(84)90066-5 / Phys. Lett. A (1984)
  29. 10.1103/PhysRevB.38.12937 / Phys. Rev. B (1988)
  30. 10.1103/PhysRevLett.64.3046 / Phys. Rev. Lett. (1990)
  31. 10.1103/PhysRevLett.58.1188 / Phys. Rev. Lett. (1987)
  32. 10.1007/BF01438506 / Z. Phys. D (1989)
  33. 10.1051/jphys:019860047080133500 / J. Phys. (Paris) (1986)
  34. 10.1103/PhysRevLett.61.535 / Phys. Rev. Lett. (1988)
  35. 10.1103/PhysRevB.38.1123 / Phys. Rev. B (1988)
  36. 10.1103/PhysRevB.41.5595 / Phys. Rev. B (1990)
  37. 10.1103/PhysRevB.34.2152 / Phys. Rev. B (1986)
  38. 10.1103/PhysRevB.33.5271 / Phys. Rev. B (1986)
  39. 10.1007/BF01426940 / Z. Phys. D (1989)
  40. {'key': '2024021010530722200_r28'}
  41. 10.1007/BF01384800 / Z. Phys. D (1986)
  42. 10.1021/cr00073a901 / Chem. Rev. (1986)
  43. 10.1103/PhysRevB.37.4369 / Phys. Rev. B (1988)
  44. 10.1063/1.458302 / J. Chem. Phys. (1990)
  45. 10.1103/PhysRevB.35.9437 / Phys. Rev. B (1987)
  46. 10.1103/PhysRevLett.53.655 / Phys. Rev. Lett. (1984)
  47. 10.1103/PhysRevB.31.1804 / Phys. Rev. B (1985)
  48. 10.1103/PhysRevB.41.11743 / Phys. Rev. B (1990)
  49. 10.1209/0295-5075/8/1/013 / Europhys. Lett. (1989)
  50. {'key': '2024021010530722200_r34'}
  51. 10.1103/PhysRev.140.A1133 / Phys. Rev. (1965)
  52. {'key': '2024021010530722200_r36', 'first-page': '457', 'volume': '84', 'year': '1927', 'journal-title': 'Ann. Phys.'} / Ann. Phys. (1927)
  53. {'key': '2024021010530722200_r36a'}
  54. 10.1103/PhysRevB.13.4274 / Phys. Rev. B (1976)
  55. 10.1103/PhysRevLett.55.2471 / Phys. Rev. Lett. (1985)
  56. {'key': '2024021010530722200_r38a'}
  57. 10.1103/PhysRevLett.62.555 / Phys. Rev. Lett. (1989)
  58. 10.1103/PhysRevLett.60.204 / Phys. Rev. Lett. (1988)
  59. {'key': '2024021010530722200_r39b'}
  60. 10.1021/j100326a009 / J. Phys. Chem. (1988)
  61. 10.1103/PhysRevLett.59.823 / Phys. Rev. Lett. (1987)
  62. 10.1103/PhysRevA.38.2178 / Phys. Rev. A (1988)
  63. 10.1063/1.455067 / J. Chem. Phys. (1988)
  64. 10.1063/1.456695 / J. Chem. Phys. (1989)
  65. 10.1063/1.457559 / J. Chem. Phys. (1989)
  66. 10.1021/j100322a039 / J. Phys. Chem. (1988)
  67. {'key': '2024021010530722200_r43a', 'first-page': '261', 'volume': '25', 'year': '1989', 'journal-title': 'Phys. Scr. T'} / Phys. Scr. T (1989)
  68. 10.1103/PhysRevB.26.4199 / Phys. Rev. B (1982)
  69. 10.1088/0022-3719/15/10/014 / J. Phys. C (1982)
  70. 10.1139/p80-159 / Can. J. Phys. (1980)
  71. 10.1016/0021-9991(82)90091-2 / Comput. Phys. (1982)
  72. 10.1021/j100319a003 / J. Phys. Chem. (1988)
  73. 10.1103/PhysRevB.34.8391 / Phys. Rev. B (1986)
  74. {'key': '2024021010530722200_r49'}
  75. 10.1103/PhysRevB.40.7985 / Phys. Rev. B (1989)
  76. 10.1021/j150662a032 / J. Phys. Chem. (1984)
  77. 10.1063/1.445188 / J. Chem. Phys. (1983)
  78. 10.1063/1.443469 / J. Chem. Phys. (1982)
  79. 10.1016/0009-2614(82)83132-1 / Chem. Phys. Lett. (1982)
  80. 10.1063/1.443298 / J. Chem. Phys. (1982)
  81. 10.1021/j100400a013 / J. Phys. Chem. (1986)
  82. {'key': '2024021010530722200_r54'}
  83. {'key': '2024021010530722200_r54a'}
  84. {'key': '2024021010530722200_r55'}
  85. {'key': '2024021010530722200_r56'}
Dates
Type When
Created 23 years ago (July 26, 2002, 8:20 a.m.)
Deposited 1 year, 6 months ago (Feb. 10, 2024, 7:40 a.m.)
Indexed 1 month, 1 week ago (July 12, 2025, 6:45 p.m.)
Issued 34 years, 7 months ago (Jan. 1, 1991)
Published 34 years, 7 months ago (Jan. 1, 1991)
Published Print 34 years, 7 months ago (Jan. 1, 1991)
Funders 0

None

@article{Barnett_1991, title={Born–Oppenheimer dynamics using density-functional theory: Equilibrium and fragmentation of small sodium clusters}, volume={94}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.460327}, DOI={10.1063/1.460327}, number={1}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Barnett, R. N. and Landman, Uzi and Nitzan, Abraham and Rajagopal, Gunaretnam}, year={1991}, month=jan, pages={608–616} }