Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

Low frequency Δν̄=0–350 cm−1, Raman intensity data were obtained from liquid water between 3.5 and 89.3 °C using holographic grating double and triple monochromators. The spectra were Bose–Einstein (BE) corrected, I/(1+n), and the total integrated (absolute) contour intensities were treated by an elaboration of the Young–Westerdahl (YW) thermodynamic method, assuming conservation of hydrogen-bonded (HB) and nonhydrogen-bonded (NHB=bent and/or stretched, O–H O) nearest-neighbor O–O pairs. A ΔH°1 value of 2.6±0.1 kcal/mol O–H ⋅⋅⋅ O or 5.2±0.2 kcal/mol H2O (11 kJ/mol O–H ⋅⋅⋅ O, or 22 kJ/mol H2O) resulted for the HB→NHB process. This intermolecular value agrees quantitatively with Raman and infrared ΔH° values from the one- and two-phonon OH-stretching regions, and from molecular dynamics, depolarized light scattering, neutron scattering, and ultrasonic absorption, thus indicating a common process. A population involving partial covalency of, i.e., charge transfer into, the H ⋅⋅⋅ O units of linear and/or weakly bent hydrogen bonds, O–H ⋅⋅⋅ O; is transformed into a second high energy population involving bent, e.g., 150° or less, and/or stretched, e.g., 3.2 Å, but otherwise strongly cohesive O–H O interactions. All difference spectra from the fundamental OH-stretching contours cross at the X(Z,X+Z)Y isobestic frequency of 3425 cm−1. Also, total integrated Raman intensity decreases occurring below 3425 cm−1 with temperature rise were found to be proportional to the total integrated intensity increases above 3425 cm−1, indicating conservation among the HB and NHB OH-stretching classes. From the enthalpy of vaporization of water at 0 °C, and the ΔH°1 of 2.6 kcal/mol O–H ⋅⋅⋅ O, the additional enthalpy, ΔH°2, needed for the complete separation of the NHB O–O nearest neighbors is ∼3.2 kcal/mol O–H ⋅⋅⋅ O or ∼6.4 kcal/mol H2O (13 kJ/mol O–H ⋅⋅⋅ O or 27 kJ/mol H2O). The NHB O–O nearest neighbors are held by forces other than those involving H ⋅⋅⋅ O partial covalency, i.e., electrostatic (multipole), induction, and dispersion forces. The NHB O–O pairs do not appear to produce significant intermolecular Raman intensity because they lack H ⋅⋅⋅O bond polarizability, but the corresponding NHB OH oscillators do contribute weakened Raman intensity above 3425 cm−1. An ideal solution thermodynamic treatment employing ΔH°1 =2.6 kcal/mol O–H ⋅⋅⋅ O, the HB mole fraction, and the vapor heat capacity, yielded a very satisfactory specific heat value of 1.1 cal deg−1 g−1 H2O at 0 °C. The NHB mole fraction, fu, from the YW treatment is negligibly small, 0.06 or less, for t<−50 °C. However, fu increases to 0.16 at 0 °C, and fu≊1 at 1437 °C, where recent shock-wave Raman measurements indicate loss of all partially covalent, charge transfer hydrogen bonding.

Bibliography

Walrafen, G. E., Fisher, M. R., Hokmabadi, M. S., & Yang, W.-H. (1986). Temperature dependence of the low- and high-frequency Raman scattering from liquid water. The Journal of Chemical Physics, 85(12), 6970–6982.

Authors 4
  1. G. E. Walrafen (first)
  2. M. R. Fisher (additional)
  3. M. S. Hokmabadi (additional)
  4. W.-H. Yang (additional)
References 94 Referenced 535
  1. {'key': '2024021004162614200_r1', 'first-page': '929', 'volume': '13', 'year': '1931', 'journal-title': 'Rend. Lineci'} / Rend. Lineci (1931)
  2. 10.1007/BF02959648 / Nuovo Cimento (1932)
  3. 10.1007/BF02957542 / Nuovo Cimento (1933)
  4. 10.1007/BF02959940 / Nuovo Cimento (1935)
  5. {'key': '2024021004162614200_r3'}
  6. 10.1098/rspa.1958.0206 / Proc. R. Soc. London Ser. A (1958)
  7. 10.1063/1.450135 / J. Chem. Phys. (1986)
  8. {'key': '2024021004162614200_r6'}
  9. {'key': '2024021004162614200_r7'}
  10. 10.1063/1.445756 / J. Chem. Phys. (1983)
  11. {'key': '2024021004162614200_r9', 'first-page': '347', 'volume': '5', 'year': '1934', 'journal-title': 'J. Phys. (Paris)'} / J. Phys. (Paris) (1934)
  12. {'key': '2024021004162614200_r9a', 'first-page': '179', 'volume': '6', 'year': '1935', 'journal-title': 'J. Phys. (Paris), Colloq.'} / J. Phys. (Paris), Colloq. (1935)
  13. {'key': '2024021004162614200_r9b', 'first-page': '109', 'volume': '6', 'year': '1936', 'journal-title': 'Ann. Phys. (Paris)'} / Ann. Phys. (Paris) (1936)
  14. 10.1007/BF03050867 / Proc. Indian Acad. Sci. A (1935)
  15. {'key': '2024021004162614200_r10a', 'first-page': '291', 'volume': '3', 'year': '1936', 'journal-title': 'Proc. Indian Acad. Sci., Sect. A'} / Proc. Indian Acad. Sci., Sect. A (1936)
  16. {'key': '2024021004162614200_r11'}
  17. 10.1063/1.1732628 / J. Chem. Phys. (1962)
  18. 10.1063/1.1724992 / J. Chem. Phys. (1964)
  19. 10.1063/1.1726891 / J. Chem. Phys. (1966)
  20. 10.1063/1.1711834 / J. Chem. Phys. (1967)
  21. {'key': '2024021004162614200_r13'}
  22. 10.1021/j100853a063 / J. Phys. Chem. (1968)
  23. {'key': '2024021004162614200_r15'}
  24. 10.1063/1.1675436 / J. Chem. Phys. (1971)
  25. {'key': '2024021004162614200_r17'}
  26. 10.1063/1.1680157 / J. Chem. Phys. (1973)
  27. {'key': '2024021004162614200_r19'}
  28. 10.1063/1.1681017 / J. Chem. Phys. (1974)
  29. 10.1063/1.436940 / J. Chem. Phys. (1978)
  30. 10.1016/0009-2614(79)80625-9 / Chem. Phys. Lett. (1979)
  31. 10.1016/0022-2860(80)80082-2 / J. Mol. Struct. (1980)
  32. 10.1063/1.441450 / J. Chem. Phys. (1981)
  33. 10.1063/1.444142 / J. Chem. Phys. (1982)
  34. {'key': '2024021004162614200_r25'}
  35. 10.1364/JOSA.56.000064 / J. Opt. Soc. Am. (1966)
  36. 10.1063/1.1675578 / J. Chem. Phys. (1971)
  37. 10.1063/1.446297 / J. Chem. Phys. (1983)
  38. 10.1063/1.447161 / J. Chem. Phys. (1984)
  39. {'key': '2024021004162614200_r30'}
  40. 10.1063/1.447748 / J. Chem. Phys. (1984)
  41. 10.1021/j100606a013 / J. Phys. Chem. (1974)
  42. {'key': '2024021004162614200_r33'}
  43. {'key': '2024021004162614200_r34'}
  44. {'key': '2024021004162614200_r35', 'first-page': '2433', 'volume': '55', 'year': '1986', 'journal-title': 'Phys. Rev. Lett.'} / Phys. Rev. Lett. (1986)
  45. {'key': '2024021004162614200_r36'}
  46. 10.1063/1.1667910 / J. Chem. Phys. (1968)
  47. 10.1063/1.1677838 / J. Chem. Phys. (1972)
  48. 10.1021/j100846a035 / J. Phys. Chem. (1969)
  49. 10.1063/1.1728040 / J. Chem. Phys. (1966)
  50. 10.1063/1.1678388 / J. Chem. Phys. (1972)
  51. 10.1063/1.450007 / J. Chem. Phys. (1986)
  52. {'key': '2024021004162614200_r43'}
  53. 10.1063/1.1696333 / J. Chem. Phys. (1965)
  54. {'key': '2024021004162614200_r45'}
  55. {'key': '2024021004162614200_r46'}
  56. {'key': '2024021004162614200_r47'}
  57. {'key': '2024021004162614200_r48'}
  58. {'key': '2024021004162614200_r49'}
  59. {'key': '2024021004162614200_r50'}
  60. 10.1063/1.1749433 / J. Chem. Phys. (1934)
  61. 10.1063/1.1749581 / J. Chem. Phys. (1935)
  62. {'key': '2024021004162614200_r52'}
  63. 10.1063/1.445355 / J. Chem. Phys. (1983)
  64. {'key': '2024021004162614200_r54'}
  65. {'key': '2024021004162614200_r55'}
  66. 10.1063/1.451383 / J. Chem. Phys. (1986)
  67. {'key': '2024021004162614200_r57'}
  68. {'key': '2024021004162614200_r58'}
  69. 10.1098/rspa.1933.0137 / Proc. R. Soc. London Ser. A (1933)
  70. 10.1139/v70-100 / Can. J. Chem. (1970)
  71. 10.1080/00268977800102101 / Mol. Phys. (1978)
  72. {'key': '2024021004162614200_r62'}
  73. 10.1063/1.442691 / J. Chem. Phys. (1982)
  74. 10.1016/0022-2852(72)90066-5 / J. Mol. Spectrosc. (1972)
  75. 10.1063/1.1681229 / J. Chem. Phys. (1974)
  76. 10.1063/1.1670854 / J. Chem. Phys. (1969)
  77. 10.1063/1.1680382 / J. Chem. Phys. (1973)
  78. 10.1021/j100881a037 / J. Phys. Chem. (1966)
  79. 10.1021/j150649a016 / J. Phys. Chem. (1984)
  80. {'key': '2024021004162614200_r69'}
  81. {'key': '2024021004162614200_r70'}
  82. 10.1063/1.451284 / J. Chem. Phys. (1986)
  83. {'key': '2024021004162614200_r71a', 'first-page': '2623', 'volume': '64', 'year': '1974', 'journal-title': 'J. Chem. Phys.'} / J. Chem. Phys. (1974)
  84. 10.1063/1.1661723 / J. Appl. Phys. (1972)
  85. 10.1063/1.1677473 / J. Chem. Phys. (1972)
  86. 10.1107/S0021889869006868 / J. Appl. Crystallogr. (1969)
  87. 10.1063/1.324517 / J. Appl. Phys. (1978)
  88. {'key': '2024021004162614200_r76', 'first-page': '379', 'volume': '266', 'year': '1985', 'journal-title': 'Z. Phys. Chem. (Leipzig)'} / Z. Phys. Chem. (Leipzig) (1985)
  89. 10.1063/1.444023 / J. Chem. Phys. (1982)
  90. 10.1107/S0365110X5700016X / Acta Crystallogr. (1957)
  91. {'key': '2024021004162614200_r79'}
  92. 10.1007/BF00651971 / J. Solution Chem. (1973)
  93. {'key': '2024021004162614200_r81'}
  94. 10.1021/j100652a010 / J. Phys. Chem. (1972)
Dates
Type When
Created 23 years ago (July 26, 2002, 9:02 a.m.)
Deposited 1 year, 6 months ago (Feb. 10, 2024, 12:36 a.m.)
Indexed 3 days, 15 hours ago (Aug. 20, 2025, 8:26 a.m.)
Issued 38 years, 8 months ago (Dec. 15, 1986)
Published 38 years, 8 months ago (Dec. 15, 1986)
Published Print 38 years, 8 months ago (Dec. 15, 1986)
Funders 0

None

@article{Walrafen_1986, title={Temperature dependence of the low- and high-frequency Raman scattering from liquid water}, volume={85}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.451384}, DOI={10.1063/1.451384}, number={12}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Walrafen, G. E. and Fisher, M. R. and Hokmabadi, M. S. and Yang, W.-H.}, year={1986}, month=dec, pages={6970–6982} }