Abstract
Low frequency Δν̄=0–350 cm−1, Raman intensity data were obtained from liquid water between 3.5 and 89.3 °C using holographic grating double and triple monochromators. The spectra were Bose–Einstein (BE) corrected, I/(1+n), and the total integrated (absolute) contour intensities were treated by an elaboration of the Young–Westerdahl (YW) thermodynamic method, assuming conservation of hydrogen-bonded (HB) and nonhydrogen-bonded (NHB=bent and/or stretched, O–H O) nearest-neighbor O–O pairs. A ΔH°1 value of 2.6±0.1 kcal/mol O–H ⋅⋅⋅ O or 5.2±0.2 kcal/mol H2O (11 kJ/mol O–H ⋅⋅⋅ O, or 22 kJ/mol H2O) resulted for the HB→NHB process. This intermolecular value agrees quantitatively with Raman and infrared ΔH° values from the one- and two-phonon OH-stretching regions, and from molecular dynamics, depolarized light scattering, neutron scattering, and ultrasonic absorption, thus indicating a common process. A population involving partial covalency of, i.e., charge transfer into, the H ⋅⋅⋅ O units of linear and/or weakly bent hydrogen bonds, O–H ⋅⋅⋅ O; is transformed into a second high energy population involving bent, e.g., 150° or less, and/or stretched, e.g., 3.2 Å, but otherwise strongly cohesive O–H O interactions. All difference spectra from the fundamental OH-stretching contours cross at the X(Z,X+Z)Y isobestic frequency of 3425 cm−1. Also, total integrated Raman intensity decreases occurring below 3425 cm−1 with temperature rise were found to be proportional to the total integrated intensity increases above 3425 cm−1, indicating conservation among the HB and NHB OH-stretching classes. From the enthalpy of vaporization of water at 0 °C, and the ΔH°1 of 2.6 kcal/mol O–H ⋅⋅⋅ O, the additional enthalpy, ΔH°2, needed for the complete separation of the NHB O–O nearest neighbors is ∼3.2 kcal/mol O–H ⋅⋅⋅ O or ∼6.4 kcal/mol H2O (13 kJ/mol O–H ⋅⋅⋅ O or 27 kJ/mol H2O). The NHB O–O nearest neighbors are held by forces other than those involving H ⋅⋅⋅ O partial covalency, i.e., electrostatic (multipole), induction, and dispersion forces. The NHB O–O pairs do not appear to produce significant intermolecular Raman intensity because they lack H ⋅⋅⋅O bond polarizability, but the corresponding NHB OH oscillators do contribute weakened Raman intensity above 3425 cm−1. An ideal solution thermodynamic treatment employing ΔH°1 =2.6 kcal/mol O–H ⋅⋅⋅ O, the HB mole fraction, and the vapor heat capacity, yielded a very satisfactory specific heat value of 1.1 cal deg−1 g−1 H2O at 0 °C. The NHB mole fraction, fu, from the YW treatment is negligibly small, 0.06 or less, for t<−50 °C. However, fu increases to 0.16 at 0 °C, and fu≊1 at 1437 °C, where recent shock-wave Raman measurements indicate loss of all partially covalent, charge transfer hydrogen bonding.
References
94
Referenced
535
{'key': '2024021004162614200_r1', 'first-page': '929', 'volume': '13', 'year': '1931', 'journal-title': 'Rend. Lineci'}
/ Rend. Lineci (1931)10.1007/BF02959648
/ Nuovo Cimento (1932)10.1007/BF02957542
/ Nuovo Cimento (1933)10.1007/BF02959940
/ Nuovo Cimento (1935){'key': '2024021004162614200_r3'}
10.1098/rspa.1958.0206
/ Proc. R. Soc. London Ser. A (1958)10.1063/1.450135
/ J. Chem. Phys. (1986){'key': '2024021004162614200_r6'}
{'key': '2024021004162614200_r7'}
10.1063/1.445756
/ J. Chem. Phys. (1983){'key': '2024021004162614200_r9', 'first-page': '347', 'volume': '5', 'year': '1934', 'journal-title': 'J. Phys. (Paris)'}
/ J. Phys. (Paris) (1934){'key': '2024021004162614200_r9a', 'first-page': '179', 'volume': '6', 'year': '1935', 'journal-title': 'J. Phys. (Paris), Colloq.'}
/ J. Phys. (Paris), Colloq. (1935){'key': '2024021004162614200_r9b', 'first-page': '109', 'volume': '6', 'year': '1936', 'journal-title': 'Ann. Phys. (Paris)'}
/ Ann. Phys. (Paris) (1936)10.1007/BF03050867
/ Proc. Indian Acad. Sci. A (1935){'key': '2024021004162614200_r10a', 'first-page': '291', 'volume': '3', 'year': '1936', 'journal-title': 'Proc. Indian Acad. Sci., Sect. A'}
/ Proc. Indian Acad. Sci., Sect. A (1936){'key': '2024021004162614200_r11'}
10.1063/1.1732628
/ J. Chem. Phys. (1962)10.1063/1.1724992
/ J. Chem. Phys. (1964)10.1063/1.1726891
/ J. Chem. Phys. (1966)10.1063/1.1711834
/ J. Chem. Phys. (1967){'key': '2024021004162614200_r13'}
10.1021/j100853a063
/ J. Phys. Chem. (1968){'key': '2024021004162614200_r15'}
10.1063/1.1675436
/ J. Chem. Phys. (1971){'key': '2024021004162614200_r17'}
10.1063/1.1680157
/ J. Chem. Phys. (1973){'key': '2024021004162614200_r19'}
10.1063/1.1681017
/ J. Chem. Phys. (1974)10.1063/1.436940
/ J. Chem. Phys. (1978)10.1016/0009-2614(79)80625-9
/ Chem. Phys. Lett. (1979)10.1016/0022-2860(80)80082-2
/ J. Mol. Struct. (1980)10.1063/1.441450
/ J. Chem. Phys. (1981)10.1063/1.444142
/ J. Chem. Phys. (1982){'key': '2024021004162614200_r25'}
10.1364/JOSA.56.000064
/ J. Opt. Soc. Am. (1966)10.1063/1.1675578
/ J. Chem. Phys. (1971)10.1063/1.446297
/ J. Chem. Phys. (1983)10.1063/1.447161
/ J. Chem. Phys. (1984){'key': '2024021004162614200_r30'}
10.1063/1.447748
/ J. Chem. Phys. (1984)10.1021/j100606a013
/ J. Phys. Chem. (1974){'key': '2024021004162614200_r33'}
{'key': '2024021004162614200_r34'}
{'key': '2024021004162614200_r35', 'first-page': '2433', 'volume': '55', 'year': '1986', 'journal-title': 'Phys. Rev. Lett.'}
/ Phys. Rev. Lett. (1986){'key': '2024021004162614200_r36'}
10.1063/1.1667910
/ J. Chem. Phys. (1968)10.1063/1.1677838
/ J. Chem. Phys. (1972)10.1021/j100846a035
/ J. Phys. Chem. (1969)10.1063/1.1728040
/ J. Chem. Phys. (1966)10.1063/1.1678388
/ J. Chem. Phys. (1972)10.1063/1.450007
/ J. Chem. Phys. (1986){'key': '2024021004162614200_r43'}
10.1063/1.1696333
/ J. Chem. Phys. (1965){'key': '2024021004162614200_r45'}
{'key': '2024021004162614200_r46'}
{'key': '2024021004162614200_r47'}
{'key': '2024021004162614200_r48'}
{'key': '2024021004162614200_r49'}
{'key': '2024021004162614200_r50'}
10.1063/1.1749433
/ J. Chem. Phys. (1934)10.1063/1.1749581
/ J. Chem. Phys. (1935){'key': '2024021004162614200_r52'}
10.1063/1.445355
/ J. Chem. Phys. (1983){'key': '2024021004162614200_r54'}
{'key': '2024021004162614200_r55'}
10.1063/1.451383
/ J. Chem. Phys. (1986){'key': '2024021004162614200_r57'}
{'key': '2024021004162614200_r58'}
10.1098/rspa.1933.0137
/ Proc. R. Soc. London Ser. A (1933)10.1139/v70-100
/ Can. J. Chem. (1970)10.1080/00268977800102101
/ Mol. Phys. (1978){'key': '2024021004162614200_r62'}
10.1063/1.442691
/ J. Chem. Phys. (1982)10.1016/0022-2852(72)90066-5
/ J. Mol. Spectrosc. (1972)10.1063/1.1681229
/ J. Chem. Phys. (1974)10.1063/1.1670854
/ J. Chem. Phys. (1969)10.1063/1.1680382
/ J. Chem. Phys. (1973)10.1021/j100881a037
/ J. Phys. Chem. (1966)10.1021/j150649a016
/ J. Phys. Chem. (1984){'key': '2024021004162614200_r69'}
{'key': '2024021004162614200_r70'}
10.1063/1.451284
/ J. Chem. Phys. (1986){'key': '2024021004162614200_r71a', 'first-page': '2623', 'volume': '64', 'year': '1974', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. (1974)10.1063/1.1661723
/ J. Appl. Phys. (1972)10.1063/1.1677473
/ J. Chem. Phys. (1972)10.1107/S0021889869006868
/ J. Appl. Crystallogr. (1969)10.1063/1.324517
/ J. Appl. Phys. (1978){'key': '2024021004162614200_r76', 'first-page': '379', 'volume': '266', 'year': '1985', 'journal-title': 'Z. Phys. Chem. (Leipzig)'}
/ Z. Phys. Chem. (Leipzig) (1985)10.1063/1.444023
/ J. Chem. Phys. (1982)10.1107/S0365110X5700016X
/ Acta Crystallogr. (1957){'key': '2024021004162614200_r79'}
10.1007/BF00651971
/ J. Solution Chem. (1973){'key': '2024021004162614200_r81'}
10.1021/j100652a010
/ J. Phys. Chem. (1972)
Dates
Type | When |
---|---|
Created | 23 years ago (July 26, 2002, 9:02 a.m.) |
Deposited | 1 year, 6 months ago (Feb. 10, 2024, 12:36 a.m.) |
Indexed | 3 days, 15 hours ago (Aug. 20, 2025, 8:26 a.m.) |
Issued | 38 years, 8 months ago (Dec. 15, 1986) |
Published | 38 years, 8 months ago (Dec. 15, 1986) |
Published Print | 38 years, 8 months ago (Dec. 15, 1986) |
@article{Walrafen_1986, title={Temperature dependence of the low- and high-frequency Raman scattering from liquid water}, volume={85}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.451384}, DOI={10.1063/1.451384}, number={12}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Walrafen, G. E. and Fisher, M. R. and Hokmabadi, M. S. and Yang, W.-H.}, year={1986}, month=dec, pages={6970–6982} }