Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

We report the detection of nascent CN(X 2Σ+, v″=0) following the 266 nm photodissociation of 300 K ICN, using sub-Doppler resolution laser-induced fluorescence, and polarized photolysis and probe lasers. When monitoring a particular CN internal state, the translational energies of the I+CN and I*+CN channels differ by the iodine spin-orbit splitting 7603 cm−1. This is used to determine the separate contributions from each channel. For I+CN, high N″ are selectively produced, with little population below N″=20 (〈Erot〉 =3300±300 cm−1), whereas the I*+CN channel is associated with a distribution peaked sharply at low N″(〈Erot〉 =355±35 cm−1). It is clear that the low and high N″ derive from linear and bent exit channel geometries, respectively. The spatial anisotropy is high (βI =1.3±0.2; βI* =1.6±0.2) and initial excitation is via a parallel transition(s), probably to a state which begins correlating with I*+CN in the linear configuration. Nascent spin-rotation states (F1 and F2) are also resolved for each channel, and for the case of I+CN, and F1 and F2 populations are quite different. There is very little vibrational excitation (<2%), and the rotational distributions and translational energies of v″=1 and 2 correspond to those of the I+CN channel. Subsequent to initial excitation, both adiabatic and/or nonadiabatic processes can ensure access to potential surfaces not excited directly, and a model is discussed which rationalizes the present experimental results, as well as the known variation of nascent E, V, R, T excitations with the photolysis wavelength.

Bibliography

Nadler, I., Mahgerefteh, D., Reisler, H., & Wittig, C. (1985). The 266 nm photolysis of ICN: Recoil velocity anisotropies and nascent E,V,R,T excitations for the CN+I(2P3/2) and CN+I(2P1/2) channels. The Journal of Chemical Physics, 82(9), 3885–3893.

Authors 4
  1. I. Nadler (first)
  2. D. Mahgerefteh (additional)
  3. H. Reisler (additional)
  4. C. Wittig (additional)
References 40 Referenced 176
  1. 10.1016/0047-2670(72)80006-6 / J. Photochem. (1972)
  2. 10.1063/1.431059 / J. Chem. Phys. (1975)
  3. 10.1063/1.433659 / J. Chem. Phys. (1977)
  4. 10.1016/0009-2614(77)85237-8 / Chem. Phys. Lett. (1977)
  5. 10.1016/0301-0104(77)85073-8 / Chem. Phys. (1977)
  6. 10.1063/1.437965 / J. Chem. Phys. (1979)
  7. 10.1016/0009-2614(79)80258-4 / Chem. Phys. Lett. (1979)
  8. 10.1016/0009-2614(80)80190-4 / Chem. Phys. Lett. (1980)
  9. 10.1016/0301-0104(82)88021-X / Chem. Phys. (1982)
  10. 10.1016/0009-2614(82)83463-5 / Chem. Phys. Lett. (1982)
  11. 10.1016/0301-0104(83)85249-5 / Chem. Phys. (1983)
  12. {'key': '2024021002000310100_r12'}
  13. 10.1016/0009-2614(84)85275-6 / Chem. Phys. Lett. (1984)
  14. {'key': '2024021002000310100_r14'}
  15. {'key': '2024021002000310100_r15'}
  16. {'key': '2024021002000310100_r16', 'first-page': '1', 'volume': '4', 'year': '1972', 'journal-title': 'Mol. Photochem.'} / Mol. Photochem. (1972)
  17. 10.1109/PROC.1963.1676 / Proc. IEEE (1963)
  18. 10.1063/1.434252 / J. Chem. Phys. (1977)
  19. 10.1063/1.446508 / J. Chem. Phys. (1984)
  20. 10.1063/1.447053 / J. Chem. Phys. (1984)
  21. 10.1016/0009-2614(84)80135-9 / Chem. Phys. Lett. (1984)
  22. 10.1007/BF01414728 / Z. Phys. A (1982)
  23. 10.1063/1.447746 / J. Chem. Phys. (1984)
  24. {'key': '2024021002000310100_r22'}
  25. {'key': '2024021002000310100_r23'}
  26. 10.1063/1.1670082 / J. Chem. Phys. (1968)
  27. 10.1063/1.1681757 / J. Chem. Phys. (1974)
  28. 10.1063/1.1676329 / J. Chem. Phys. (1971)
  29. 10.1146/annurev.pc.33.100182.001003 / Annu. Rev. Phys. Chem. (1982)
  30. {'key': '2024021002000310100_r26'}
  31. {'key': '2024021002000310100_r26a'}
  32. {'key': '2024021002000310100_r27', 'first-page': '334', 'volume': '18', 'year': '1955', 'journal-title': 'Ann. Astrophys.'} / Ann. Astrophys. (1955)
  33. {'key': '2024021002000310100_r27a'}
  34. {'key': '2024021002000310100_r28'}
  35. 10.1146/annurev.pc.33.100182.002205 / Annu. Rev. Phys. Chem. (1982)
  36. 10.1063/1.441681 / J. Chem. Phys. (1981)
  37. 10.1021/cr60269a004 / Chem. Rev. (1971)
  38. {'key': '2024021002000310100_r32'}
  39. {'key': '2024021002000310100_r33'}
  40. {'key': '2024021002000310100_r34'}
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 9 a.m.)
Deposited 1 year, 6 months ago (Feb. 9, 2024, 10:14 p.m.)
Indexed 1 year, 6 months ago (Feb. 11, 2024, 2:19 a.m.)
Issued 40 years, 3 months ago (May 1, 1985)
Published 40 years, 3 months ago (May 1, 1985)
Published Print 40 years, 3 months ago (May 1, 1985)
Funders 0

None

@article{Nadler_1985, title={The 266 nm photolysis of ICN: Recoil velocity anisotropies and nascent E,V,R,T excitations for the CN+I(2P3/2) and CN+I(2P1/2) channels}, volume={82}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.448879}, DOI={10.1063/1.448879}, number={9}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Nadler, I. and Mahgerefteh, D. and Reisler, H. and Wittig, C.}, year={1985}, month=may, pages={3885–3893} }