Abstract
We present theory and numerical results for a new method for obtaining eigenfunctions and eigenvalues of molecular vibrational wave functions. The method combines aspects of the semiclassical nature of vibrational motion and variational, ab initio techniques. Localized complex Gaussian wave functions, whose parameters are chosen according to classical phase space criteria are employed in standard numerical basis set diagonalization routines. The Gaussians are extremely convenient as regards construction of Hamiltonian matrix elements, computation of derived properties such as Franck–Condon factors, and interpretation of results in terms of classical motion. The basis set is not tied to any zeroth order Hamiltonian and is readily adaptable to arbitrary smooth potentials of any dimension.
References
30
Referenced
241
10.1080/00268977400102121
/ Mol. Phys. (1974)10.1080/00268977400102131
/ Mol. Phys. (1974)10.1016/0022-2852(76)90026-6
/ J. Mol. Spectrosc. (1976)10.1063/1.433585
/ J. Chem. Phys. (1976)10.1016/0022-2852(76)90328-3
/ J. Mol. Spectrosc. (1976)10.1366/000370276774456985
/ Appl. Spectrosc. (1976)10.1063/1.434411
/ J. Chem. Phys. (1977)10.1063/1.1681624
/ J. Chem. Phys. (1974){'key': '2024020918201531900_r5a', 'first-page': '768', 'volume': '81', 'year': '1974', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. (1974)10.1063/1.432266
/ J. Chem. Phys. (1976)10.1063/1.1678259
/ J. Chem. Phys. (1972)10.1039/dc9735500034
/ Discuss. Faraday Soc. (1973)10.1063/1.1681734
/ J. Chem. Phys. (1974)10.1063/1.430777
/ J. Chem. Phys. (1975){'key': '2024020918201531900_r8c', 'first-page': '559', 'volume': '67', 'year': '1971', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. (1971)10.1080/00268977600102721
/ Mol. Phys. (1976)10.1088/0305-4470/7/7/005
/ J. Phys. A (1974)10.1103/RevModPhys.35.558
/ Rev. Mod. Phys. (1963)10.1016/0041-5553(63)90267-2
/ Math. Comput. Phys. (1963){'key': '2024020918201531900_r12'}
{'key': '2024020918201531900_r13'}
10.1103/PhysRev.40.749
/ Phys. Rev. (1932)10.1017/S0305004100000487
/ Proc. Cambridge Philos. Soc. (1949){'key': '2024020918201531900_r15', 'first-page': '264', 'volume': '22', 'year': '1940', 'journal-title': 'Proc. Phys. Math. Soc. Jpn.'}
/ Proc. Phys. Math. Soc. Jpn. (1940)10.1063/1.435296
/ J. Chem. Phys. (1977)10.1063/1.430620
/ J. Chem. Phys. (1975){'key': '2024020918201531900_r16b', 'first-page': '4999', 'volume': '65', 'year': '1976', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. (1976){'key': '2024020918201531900_r17'}
10.1098/rsta.1977.0145
/ Philos. Trans. R. Soc. London (1977)10.1063/1.1676449
/ J. Chem. Phys. (1971)
Dates
Type | When |
---|---|
Created | 22 years, 5 months ago (Feb. 27, 2003, 4:39 p.m.) |
Deposited | 1 year, 6 months ago (Feb. 9, 2024, 3:24 p.m.) |
Indexed | 2 weeks, 6 days ago (Aug. 6, 2025, 8:58 a.m.) |
Issued | 45 years, 10 months ago (Oct. 15, 1979) |
Published | 45 years, 10 months ago (Oct. 15, 1979) |
Published Print | 45 years, 10 months ago (Oct. 15, 1979) |
@article{Davis_1979, title={Semiclassical Gaussian basis set method for molecular vibrational wave functions}, volume={71}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.438727}, DOI={10.1063/1.438727}, number={8}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Davis, Michael J. and Heller, Eric J.}, year={1979}, month=oct, pages={3383–3395} }