Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

From the molecular orbital theory for diatomic molecules, the virial theorem, and the Heisenberg equation of motion, expressions are derived for off-diagonal matrix elements of the one-electron Hamiltonian for a limited basis set of atomic orbitals that display exact zero differential diatomic overlap. The resulting expressions are combined to yield analytic equations for the force constants ke and higher derivatives of the diatomic potential energy surface. These expressions depend only on the density matrix of a single calculation near enough to the equilibrium geometry. Under the approximation that all nonvanishing Coulomb interactions are given by classical electrostatics, a simple formula for the force constant is obtained which has mean square error of 3% for a number of first- and second-row diatomic molecules. If reasonable approximations are made for the density matrix and the equilibrium separation Re is estimated by a ’’tangent sphere’’ model, the following simple equations are obtained: keR3e=η/2(1+nAζB+nBζA) (two atoms with an s,p basis), keR3e=η/2[1+nbζa +1/2ζb(na+ζa)] (hydrides), keR3e=η/2[1+1/2(nAζB+nbζA)] (hydrogen molecule). Here, η is the number of bonds, n the principal quantum number, and ζ the orbital exponent of the valence electrons as, for example, given by Slater’s rules. These equations yield predictions generally within ±10% of the experimental values.

Bibliography

Zerner, M. C., & Parr, R. G. (1978). Simple molecular orbital treatment of diatomic force constants. The Journal of Chemical Physics, 69(8), 3858–3867.

Authors 2
  1. Michael C. Zerner (first)
  2. Robert G. Parr (additional)
References 50 Referenced 21
  1. {'key': '2024020917172576000_r1'}
  2. 10.1063/1.1712233 / J. Chem. Phys. (1967)
  3. {'key': '2024020917172576000_r3'}
  4. 10.1002/qua.560110108 / Int. J. Quantum Chem. (1977)
  5. 10.1016/0009-2614(67)80061-7 / Chem. Phys. Lett. (1967)
  6. 10.1002/qua.560080608 / Int. J. Quantum Chem. (1974)
  7. 10.1063/1.1734135 / J. Chem. Phys. (1963)
  8. 10.1063/1.1701343 / J. Chem. Phys. (1962)
  9. 10.1063/1.1670192 / J. Chem. Phys. (1968)
  10. 10.1002/qua.560070106 / Int. J. Quantum Chem. (1973)
  11. 10.1063/1.1701475 / J. Chem. Phys. (1965)
  12. 10.1063/1.1701476 / J. Chem. Phys. (1965)
  13. 10.1063/1.1727227 / J. Chem. Phys. (1966)
  14. 10.1063/1.1670299 / J. Chem. Phys. (1968)
  15. {'key': '2024020917172576000_r11', 'first-page': '69', 'volume': '2', 'year': '1967', 'journal-title': 'Int. J. Quantum Chem.'} / Int. J. Quantum Chem. (1967)
  16. {'key': '2024020917172576000_r11a', 'first-page': '261', 'volume': '1', 'year': '1967', 'journal-title': 'Int. J. Quantum Chem. Symp.'} / Int. J. Quantum Chem. Symp. (1967)
  17. {'key': '2024020917172576000_r11b', 'first-page': '485', 'volume': '1', 'year': '1967', 'journal-title': 'Int. J. Quantum Chem. Symp.'} / Int. J. Quantum Chem. Symp. (1967)
  18. 10.1063/1.1672412 / J. Chem. Phys. (1969)
  19. {'key': '2024020917172576000_r12'}
  20. {'key': '2024020917172576000_r13'}
  21. 10.1063/1.1841277 / J. Chem. Phys. (1967)
  22. 10.1063/1.1668772 / J. Chem. Phys. (1968)
  23. 10.1063/1.1670191 / J. Chem. Phys. (1968)
  24. 10.1063/1.1676736 / J. Chem. Phys. (1971)
  25. 10.1063/1.1670868 / J. Chem. Phys. (1969)
  26. {'key': '2024020917172576000_r16'}
  27. 10.1103/PhysRev.36.57 / Phys. Rev. (1930)
  28. {'key': '2024020917172576000_r18'}
  29. {'key': '2024020917172576000_r19'}
  30. {'key': '2024020917172576000_r20'}
  31. {'key': '2024020917172576000_r21'}
  32. 10.1063/1.1841277 / J. Chem. Phys. (1967)
  33. 10.1063/1.1668772 / J. Chem. Phys. (1968)
  34. 10.1063/1.1670191 / J. Chem. Phys. (1968)
  35. 10.1063/1.1669969 / J. Chem. Phys. (1968)
  36. 10.1063/1.1675361 / J. Chem. Phys. (1971)
  37. 10.1080/00268976900100941 / Mol. Phys. (1969)
  38. 10.1080/00268977300100991 / Mol. Phys. (1973)
  39. 10.1016/0009-2614(71)80294-4 / Chem. Phys. Lett. (1971)
  40. 10.1063/1.1712197 / J. Chem. Phys. (1967)
  41. 10.1021/ja00706a029 / J. Am. Chem. Soc. (1970)
  42. 10.1021/ja00716a003 / J. Am. Chem. Soc. (1970)
  43. 10.1021/ja00839a001 / J. Am. Chem. Soc. (1975)
  44. 10.1021/ja00839a001 / J. Am. Chem. Soc. (1975)
  45. 10.1021/ja00839a003 / J. Am. Chem. Soc. (1975)
  46. 10.1021/ja00839a004 / J. Am. Chem. Soc. (1975)
  47. 10.1080/00268977200100961 / Mol. Phys. (1972)
  48. 10.1021/ja00448a001 / J. Am. Chem. Soc. (1977)
  49. 10.1063/1.1731354 / J. Chem. Phys. (1960)
  50. 10.1007/BF00548085 / Theor. Chim. Acta (1977)
Dates
Type When
Created 22 years, 6 months ago (Feb. 27, 2003, 4:26 p.m.)
Deposited 1 year, 6 months ago (Feb. 9, 2024, 2:07 p.m.)
Indexed 1 year, 6 months ago (Feb. 10, 2024, 1:04 a.m.)
Issued 46 years, 10 months ago (Oct. 15, 1978)
Published 46 years, 10 months ago (Oct. 15, 1978)
Published Print 46 years, 10 months ago (Oct. 15, 1978)
Funders 0

None

@article{Zerner_1978, title={Simple molecular orbital treatment of diatomic force constants}, volume={69}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.437052}, DOI={10.1063/1.437052}, number={8}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Zerner, Michael C. and Parr, Robert G.}, year={1978}, month=oct, pages={3858–3867} }