Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.

Bibliography

Arbuznikov, A. V., & Kaupp, M. (2012). Importance of the correlation contribution for local hybrid functionals: Range separation and self-interaction corrections. The Journal of Chemical Physics, 136(1).

Authors 2
  1. Alexei V. Arbuznikov (first)
  2. Martin Kaupp (additional)
References 88 Referenced 100
  1. {'key': '2023062522260787100_c1', 'first-page': '1', 'volume-title': 'Density Functional Theory and Its Application to Materials', 'author': 'Van Doren', 'year': '2001'} / Density Functional Theory and Its Application to Materials by Van Doren (2001)
  2. 10.1063/1.1904565 / J. Chem. Phys. (2005)
  3. 10.1063/1.2179072 / J. Chem. Phys. (2006)
  4. 10.1063/1.2741248 / J. Chem. Phys. (2007)
  5. 10.1063/1.2749510 / J. Chem. Phys. (2007)
  6. 10.1063/1.1589733 / J. Chem. Phys. (2003)
  7. 10.1063/1.1844493 / J. Chem. Phys. (2005)
  8. 10.1103/PhysRevA.79.062515 / Phys. Rev. A (2009)
  9. 10.1021/jp980950v / J. Phys. Chem. A (1998)
  10. 10.1063/1.1528936 / J. Chem. Phys. (2003)
  11. 10.1063/1.2429058 / J. Chem. Phys. (2007)
  12. 10.1016/j.cplett.2007.04.020 / Chem. Phys. Lett. (2007)
  13. 10.1021/jp903233q / J. Phys. Chem. A (2009)
  14. 10.1063/1.2784406 / J. Chem. Phys. (2007)
  15. 10.1063/1.2831556 / J. Chem. Phys. (2008)
  16. 10.1103/PhysRevA.78.052513 / Phys. Rev. A (2008)
  17. 10.1063/1.464913 / J. Chem. Phys. (1993)
  18. 10.1021/j100096a001 / J. Phys. Chem. (1994)
  19. 10.1103/PhysRevB.37.785 / Phys. Rev. B (1988)
  20. 10.1016/0009-2614(89)87234-3 / Chem. Phys. Lett. (1989)
  21. 10.1063/1.2795700 / J. Chem. Phys. (2007)
  22. 10.1021/ct900392e / J. Chem. Theory Comput. (2009)
  23. 10.1002/qua.22721 / Int. J. Quantum Chem. (2011)
  24. {'year': '2010', 'key': '2023062522260787100_c20'} (2010)
  25. 10.1021/jp992303p / J. Phys. Chem. A (1999)
  26. 10.1063/1.479620 / J. Chem. Phys. (1999)
  27. 10.1063/1.474864 / J. Chem. Phys. (1997)
  28. 10.1021/jp001061m / J. Phys. Chem. A (2000)
  29. 10.1007/s00214-002-0398-y / Theor. Chem. Acc. (2003)
  30. 10.1063/1.3247288 / J. Chem. Phys. (2009)
  31. 10.1063/1.2920196 / J. Chem. Phys. (2008)
  32. 10.1063/1.1904566 / J. Chem. Phys. (2005)
  33. 10.1103/PhysRevB.68.245120 / Phys. Rev. B (2003)
  34. {'volume-title': 'Quantum Theory of Many-particle Systems', 'year': '2003', 'key': '2023062522260787100_c30'} / Quantum Theory of Many-particle Systems (2003)
  35. 10.1016/S0009-2614(97)00758-6 / Chem. Phys. Lett. (1997)
  36. 10.1063/1.1383587 / J. Chem. Phys. (2001)
  37. 10.1016/j.cplett.2004.06.011 / Chem. Phys. Lett. (2004)
  38. 10.1016/j.cplett.2005.08.060 / Chem. Phys. Lett. (2005)
  39. 10.1002/qua.20259 / Int. J. Quantum Chem. (2004)
  40. 10.1103/PhysRevB.70.205127 / Phys. Rev. B (2004)
  41. 10.1063/1.1824896 / J. Chem. Phys. (2005)
  42. 10.1039/b509242f / Phys. Chem. Chem. Phys. (2005)
  43. 10.1063/1.3152221 / J. Chem. Phys. (2009)
  44. 10.1063/1.2403848 / J. Chem. Phys. (2006)
  45. 10.1103/PhysRevB.23.5048 / Phys. Rev. B (1981)
  46. 10.1063/1.1794633 / J. Chem. Phys. (2004)
  47. 10.1063/1.476722 / J. Chem. Phys. (1998)
  48. 10.1063/1.1521432 / J. Chem. Phys. (2002)
  49. 10.1103/PhysRevLett.82.2544 / Phys. Rev. Lett. (1999)
  50. 10.1063/1.1665298 / J. Chem. Phys. (2004)
  51. 10.1063/1.2980056 / J. Chem. Phys. (2008)
  52. 10.1063/1.3451078 / J. Chem. Phys. (2010)
  53. {'year': '2009', 'key': '2023062522260787100_c48'} (2009)
  54. {'key': '2023062522260787100_c49'}
  55. 10.1063/1.456153 / J. Chem. Phys. (1998)
  56. 10.1063/1.464303 / J. Chem. Phys. (1993)
  57. 10.1063/1.456415 / J. Chem. Phys. (1989)
  58. 10.1063/1.458892 / J. Chem. Phys. (1990)
  59. 10.1063/1.473182 / J. Chem. Phys. (1997)
  60. 10.1063/1.481336 / J. Chem. Phys. (2000)
  61. 10.1039/b416937a / Phys. Chem. Chem. Phys. (2005)
  62. 10.1021/jp045141s / J. Phys. Chem. A (2005)
  63. 10.1021/jp035287b / J. Phys. Chem. A (2003)
  64. 10.1021/ct900489g / J. Chem. Theory Comput. (2010)
  65. 10.1063/1.2196883 / J. Chem. Phys. (2006)
  66. 10.1103/PhysRevB.45.13244 / Phys. Rev. B (1992)
  67. 10.1103/PhysRevB.53.3764 / Phys Rev B (1996)
  68. 10.1021/ct800013z / J. Chem. Theory Comput. (2008)
  69. 10.1103/PhysRevA.77.060502 / Phys. Rev. A (2008)
  70. 10.1017/S0305004100016108 / Proc. Cambridge Philos. Soc. (1930)
  71. 10.1103/PhysRev.81.385 / Phys. Rev. (1951)
  72. 10.1139/p80-159 / Can. J. Phys. (1980)
  73. 10.1063/1.464304 / J. Chem. Phys. (1993)
  74. 10.1016/0009-2614(96)00478-2 / Chem. Phys. Lett. (1996)
  75. 10.1063/1.474180 / J. Chem. Phys. (1997)
  76. 10.1063/1.1774975 / J. Chem. Phys. (2004)
  77. 10.1103/PhysRevLett.83.694 / Phys. Rev. Lett. (1999)
  78. 10.1103/PhysRevA.62.012507 / Phys. Rev. A (2000)
  79. 10.1103/PhysRevLett.93.213002 / Phys. Rev. Lett. (2004)
  80. 10.1021/jp982441z / J. Phys. Chem. A (1998)
  81. 10.1063/1.1630017 / J. Chem. Phys. (2004)
  82. 10.1039/b311840a / Phys. Chem. Chem. Phys. (2004)
  83. 10.1021/jp0534479 / J. Phys. Chem. A (2005)
  84. 10.1063/1.2566637 / J. Chem. Phys. (2007)
  85. 10.1126/science.1158722 / Science (2008)
  86. 10.1103/PhysRevLett.102.066403 / Phys. Rev. Lett. (2009)
  87. 10.1103/PhysRevA.38.3098 / Phys. Rev. A (1988)
  88. 10.1021/jp202770c / J. Phys. Chem. A (2011)
Dates
Type When
Created 13 years, 7 months ago (Jan. 6, 2012, 7:20 p.m.)
Deposited 2 years, 2 months ago (June 25, 2023, 6:26 p.m.)
Indexed 3 weeks, 2 days ago (Aug. 12, 2025, 5:48 p.m.)
Issued 13 years, 7 months ago (Jan. 6, 2012)
Published 13 years, 7 months ago (Jan. 6, 2012)
Published Online 13 years, 7 months ago (Jan. 6, 2012)
Published Print 13 years, 7 months ago (Jan. 7, 2012)
Funders 1
  1. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. KA1187/10-1

@article{Arbuznikov_2012, title={Importance of the correlation contribution for local hybrid functionals: Range separation and self-interaction corrections}, volume={136}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.3672080}, DOI={10.1063/1.3672080}, number={1}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Arbuznikov, Alexei V. and Kaupp, Martin}, year={2012}, month=jan }