Crossref journal-article
AIP Publishing
Journal of Applied Physics (317)
Abstract

The temperature dependence of both the grain-boundary potential barrier height and the conductivity across the grain-boundary space-charge depletion layer in acceptor-doped SrTiO3 ceramics has been investigated by a numerical simulation technique. The underlying model is that of a back-to-back double Schottky barrier at the grain boundary. The influence of the amount of positively charged donorlike grain-boundary interface states on the charge transport behavior of the grain-boundary region is also discussed. An interpretation in terms of a defect chemistry model of the bulk and the space-charge depletion layer, which on both sides surrounds the grain-boundary core is presented. The temperature behavior of the potential barrier at the grain boundary can be divided into three different regimes: a linear regime, and subsequently, saturation and decreasing regimes. The theoretical explanation for this behavior is given. Two different spatial conductivity profiles at the grain boundaries have to be considered, which clearly can be identified by two different characteristic thermal activation energies of the effective grain-boundary conductivity. The barrier height itself is not equal to the the thermal activation energy of the effective grain-boundary conductivity. The electrical characteristics of the grain boundaries can be influenced deliberately by decorating the grain boundaries with suitable dopants.

Bibliography

Hagenbeck, R., & Waser, R. (1998). Influence of temperature and interface charge on the grain-boundary conductivity in acceptor-doped SrTiO3 ceramics. Journal of Applied Physics, 83(4), 2083–2092.

Authors 2
  1. Rainer Hagenbeck (first)
  2. Rainer Waser (additional)
References 38 Referenced 80
  1. 10.1111/j.1151-2916.1994.tb06983.x / J. Am. Ceram. Soc. (1994)
  2. {'key': '2024020220022420200_r2', 'first-page': '89', 'volume': '41', 'year': '1983', 'journal-title': 'Philips Tech. Rev.'} / Philips Tech. Rev. (1983)
  3. 10.1111/j.1151-2916.1991.tb07812.x / J. Am. Ceram. Soc. (1991)
  4. {'key': '2024020220022420200_r4'}
  5. {'key': '2024020220022420200_r5'}
  6. {'key': '2024020220022420200_r6'}
  7. 10.1016/0304-3991(95)00030-5 / Ultramicroscopy (1995)
  8. 10.1111/j.1151-2916.1997.tb03032.x / J. Am. Ceram. Soc. (1997)
  9. 10.1016/0167-2738(94)00144-H / Solid State Ionics (1995)
  10. {'key': '2024020220022420200_r10'}
  11. 10.1016/0079-6786(95)00004-E / Prog. Solid State Chem. (1995)
  12. 10.1016/0921-5107(96)01584-X / Mater. Sci. Eng. B (1996)
  13. 10.1111/j.1151-2916.1997.tb03121.x / J. Am. Ceram. Soc. (1997)
  14. {'key': '2024020220022420200_r14'}
  15. 10.1016/0925-4005(92)80400-R / Sens. Actuators B (1992)
  16. 10.1016/0925-4005(91)80146-B / Sens. Actuators B (1991)
  17. 10.1088/0268-1242/5/2/001 / Semicond. Sci. Technol. (1990)
  18. 10.1111/j.1151-2916.1990.tb06450.x / J. Am. Ceram. Soc. (1990)
  19. 10.1080/10584589208215729 / Integr. Ferroelectr. (1992)
  20. {'key': '2024020220022420200_r20'}
  21. {'key': '2024020220022420200_r21'}
  22. 10.1103/PhysRevB.33.3952 / Phys. Rev. B (1986)
  23. {'key': '2024020220022420200_r23'}
  24. {'key': '2024020220022420200_r24'}
  25. {'key': '2024020220022420200_r25'}
  26. 10.1016/0022-3697(67)90114-X / J. Phys. Chem. Solids (1967)
  27. 10.1111/j.1151-2916.1981.tb10325.x / J. Am. Ceram. Soc. (1981)
  28. {'key': '2024020220022420200_r28', 'first-page': '489', 'volume': '31', 'year': '1976', 'journal-title': 'Philips Res. Rep.'} / Philips Res. Rep. (1976)
  29. 10.1111/j.1151-2916.1981.tb10223.x / J. Am. Ceram. Soc. (1981)
  30. 10.1149/1.2127727 / J. Electrochem. Soc. (1981)
  31. 10.1111/j.1151-2916.1984.tb18849.x / J. Am. Ceram. Soc. (1984)
  32. {'key': '2024020220022420200_r32'}
  33. 10.1002/bbpc.199700032 / Ber. Bunsenges. Phys. Chem. (1997)
  34. {'key': '2024020220022420200_r34'}
  35. 10.1111/j.1151-2916.1981.tb10223.x / J. Am. Ceram. Soc. (1981)
  36. {'key': '2024020220022420200_r36'}
  37. {'key': '2024020220022420200_r37'}
  38. {'key': '2024020220022420200_r38', 'first-page': '489', 'volume': '31', 'year': '1976', 'journal-title': 'Philips Res. Rep.'} / Philips Res. Rep. (1976)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 9:53 a.m.)
Deposited 1 year, 6 months ago (Feb. 2, 2024, 3:45 p.m.)
Indexed 1 month, 3 weeks ago (July 8, 2025, 3:24 a.m.)
Issued 27 years, 6 months ago (Feb. 15, 1998)
Published 27 years, 6 months ago (Feb. 15, 1998)
Published Print 27 years, 6 months ago (Feb. 15, 1998)
Funders 0

None

@article{Hagenbeck_1998, title={Influence of temperature and interface charge on the grain-boundary conductivity in acceptor-doped SrTiO3 ceramics}, volume={83}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.366941}, DOI={10.1063/1.366941}, number={4}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Hagenbeck, Rainer and Waser, Rainer}, year={1998}, month=feb, pages={2083–2092} }