Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

The authors show that the magnetization of a 2-phase magnetostrictive/piezoelectric multiferroic single-domain shape-anisotropic nanomagnet can be switched with very small voltages that generate strain in the magnetostrictive layer. This can be the basis of ultralow power computing and signal processing. With appropriate material choice, the energy dissipated per switching event can be reduced to ∼45 kT at room temperature for a switching delay of ∼100 ns and ∼70 kT for a switching delay of ∼10 ns, if the energy barrier separating the two stable magnetization directions is ∼32 kT. Such devices can be powered by harvesting energy exclusively from the environment without the need for a battery.

Bibliography

Roy, K., Bandyopadhyay, S., & Atulasimha, J. (2011). Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Applied Physics Letters, 99(6).

Authors 3
  1. Kuntal Roy (first)
  2. Supriyo Bandyopadhyay (additional)
  3. Jayasimha Atulasimha (additional)
References 19 Referenced 212
  1. 10.1063/1.2709640 / Appl. Phys. Lett. (2007)
  2. 10.1103/PhysRevLett.83.1042 / Phys. Rev. Lett. (1999)
  3. 10.1109/TNANO.2010.2041248 / IEEE Trans. Nanotechnol. (2010)
  4. 10.1016/j.jmmm.2007.12.019 / J. Magn. Magn. Mater. (2008)
  5. 10.1038/nature02441 / Nature (London) (2004)
  6. {'year': '2003', 'key': '2023070317313633400_c6'} (2003)
  7. {'volume': '2009', 'journal-title': 'Dig. Tech. Pap. - Symp. VLSI Technol.', 'first-page': '230', 'key': '2023070317313633400_c7'} / Dig. Tech. Pap. - Symp. VLSI Technol.
  8. 10.1063/1.3506690 / Appl. Phys. Lett. (2010)
  9. 10.1021/nl070465o / Nano Lett. (2007)
  10. 10.1021/nl9036406 / Nano Lett. (2010)
  11. 10.1038/nature05023 / Nature (London) (2006)
  12. 10.1109/JPROC.2010.2064150 / Proc. IEEE (2010)
  13. 10.1109/TNANO.2009.2016657 / IEEE Trans. Nanotechnol. (2009)
  14. See supplementary material at http://dx.doi.org/10.1063/1.3624900 for detailed derivations and additional simulation results.
  15. 10.1063/1.3429250 / J. Appl. Phys. (2010)
  16. S. Roundy, Ph.D. thesis, Mech. Eng., University of California, Berkeley, California, 2003.
  17. 10.1088/0964-1726/16/3/R01 / Smart Mater. Struct. (2007)
  18. 10.1088/0964-1726/13/1/007 / Smart Mater. Struct. (2004)
  19. 10.1016/j.sna.2004.12.032 / Sens. Actuators, A (2005)
Dates
Type When
Created 14 years ago (Aug. 10, 2011, 6:25 p.m.)
Deposited 2 years, 1 month ago (July 3, 2023, 4:39 p.m.)
Indexed 1 week, 3 days ago (Aug. 23, 2025, 1:07 a.m.)
Issued 14 years ago (Aug. 8, 2011)
Published 14 years ago (Aug. 8, 2011)
Published Online 14 years ago (Aug. 9, 2011)
Published Print 14 years ago (Aug. 8, 2011)
Funders 0

None

@article{Roy_2011, title={Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing}, volume={99}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.3624900}, DOI={10.1063/1.3624900}, number={6}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Roy, Kuntal and Bandyopadhyay, Supriyo and Atulasimha, Jayasimha}, year={2011}, month=aug }