Crossref journal-article
AIP Publishing
Journal of Applied Physics (317)
Abstract

The temperature dependence of the maximum strain a bulk metallic glass (BMG) can undergo in its supercooled liquid state under specified conditions is determined. This formability is measured experimentally over a wide temperature range using Zr35Ti30Cu8.25Be26.75 as an example BMG. When considering five different BMG formers, we found that the formability continuously increases with temperature. This behavior is ubiquitous among BMGs whose crystallization behavior can be described by steady state nucleation and diffusion limited growth. Therefore, in order to maximize the formability during thermoplastic forming of BMGs, the highest processing temperature should be chosen at which crystallization can still be avoided.

Bibliography

Bryn Pitt, E., Kumar, G., & Schroers, J. (2011). Temperature dependence of the thermoplastic formability in bulk metallic glasses. Journal of Applied Physics, 110(4).

Authors 3
  1. E. Bryn Pitt (first)
  2. Golden Kumar (additional)
  3. Jan Schroers (additional)
References 58 Referenced 47
  1. 10.1002/adma.200902776 / Adv. Mater. (2010)
  2. 10.1016/j.actamat.2006.09.024 / Acta Mater. (2007)
  3. 10.1063/1.367167 / J. Appl. Phys. (1998)
  4. 10.1103/PhysRevLett.82.2290 / Phys. Rev. Lett. (1999)
  5. 10.1103/PhysRevB.67.184203 / Phys. Rev. (2003)
  6. 10.1016/S1359-6454(99)00030-0 / Acta Mater. (1999)
  7. 10.1016/j.actamat.2003.10.003 / Acta Mater. (2004)
  8. 10.1557/mrs2007.122 / MRS Bull. (2007)
  9. 10.1002/adma.v19:23 / Adv. Mater. (2007)
  10. 10.1103/PhysRevLett.94.205502 / Phys. Rev. Lett. (2005)
  11. {'key': '2023080401535553800_c11', 'first-page': '61', 'volume': '164', 'year': '2006', 'journal-title': 'Adv. Mater. Processes'} / Adv. Mater. Processes (2006)
  12. 10.1016/j.scriptamat.2007.04.033 / Scr. Mater. (2007)
  13. 10.1016/0025-5408(78)90182-4 / Mater. Res. Bull. (1978)
  14. 10.1063/1.1350624 / Appl. Phys. Lett. (2001)
  15. 10.1063/1.1738945 / Appl. Phys. Lett. (2004)
  16. 10.1063/1.2008374 / Appl. Phys. Lett. (2005)
  17. 10.1016/S0924-0136(01)00957-8 / J. Mater. Process. Technol. (2001)
  18. 10.1016/j.scriptamat.2008.09.021 / Scr. Mater. (2009)
  19. 10.1002/adma.201002148 / Adv. Mater. (2011)
  20. 10.1063/1.114769 / Appl. Phys. Lett. (1995)
  21. 10.1557/JMR.2002.0028 / J. Mater. Res. (2002)
  22. 10.1007/s11661-004-0125-5 / Metall. Mater. Trans. (2004)
  23. 10.1016/S1359-6462(01)00837-5 / Scr. Mater. (2001)
  24. 10.1016/S0966-9795(02)00135-8 / Intermetallics (2002)
  25. 10.1109/JMEMS.0007.892889 / J. Microelectromech. Syst. (2007)
  26. 10.1557/jmr.2007.0035 / J. Mater Res. (2007)
  27. 10.1063/1.2431710 / Appl. Phys. Lett. (2007)
  28. 10.1038/nature07718 / Nature (2009)
  29. 10.1016/S1369-7021(11)70018-9 / Mater. Today (2011)
  30. 10.1088/0960-1317/19/11/115030 / J. Micromech. Microeng. (2009)
  31. 10.1063/1.2834712 / Appl. Phys. Lett. (2008)
  32. 10.1016/j.scriptamat.2008.03.008 / Scr. Mater. (2008)
  33. 10.1063/1.1818355 / J. Appl. Phys. (2004)
  34. 10.1103/PhysRevLett.101.145702 / Phys. Rev. Lett. (2008)
  35. 10.1088/0957-4484/18/3/035302 / J. Microelectromech. Syst. (2011)
  36. 10.1016/j.scriptamat.2006.08.048 / Scr. Mater. (2007)
  37. 10.1016/j.scriptamat.2006.10.019 / Scr. Mater. (2007)
  38. 10.1063/1.3485298 / Appl. Phys. Lett. (2010)
  39. 10.1088/0957-4484/18/3/035302 / Nanotechnology (2007)
  40. 10.1016/j.scriptamat.2009.02.052 / Scr. Mater. (2009)
  41. 10.2320/matertrans.45.1239 / Mater. Trans. (2004)
  42. 10.1016/S0924-0136(01)00605-7 / J Mater. Process. Technol. (2001)
  43. 10.1016/j.actamat.2007.10.008 / Acta Mater. (2008)
  44. 10.1063/1.93645 / Appl. Phys. Lett. (1982)
  45. {'key': '2023080401535553800_c45', 'first-page': '464', 'article-title': 'Mater. Trans', 'volume': '38', 'year': '1997', 'journal-title': 'JIM'} / JIM / Mater. Trans (1997)
  46. 10.1080/01418610110102473 / Philos. Mag. A (2002)
  47. 10.1063/1.1289033 / Appl. Phys. Lett. (2000)
  48. 10.1016/S1359-6454(98)00242-0 / Acta Mater. (1998)
  49. 10.1103/PhysRevB.60.11855 / Phys. Rev. (1999)
  50. 10.1063/1.122856 / Appl. Phys. Lett. (1998)
  51. 10.1016/S1359-6454(03)00164-2 / Acta Mater. (2003)
  52. 10.1103/PhysRevB.20.1077 / Phys. Rev. B (1979)
  53. 10.1557/mrs2007.127 / MRS Bull. (2007)
  54. 10.1016/S0081-1947(08)60144-7 / Solid State Phys.: Adv. Res. Appl. (1991)
  55. 10.1126/science.1201362 / Science (2011)
  56. 10.1063/1.2732822 / Appl. Phys. Lett. (2007)
  57. 10.1063/1.1644052 / Appl. Phys. Lett. (2004)
  58. B. Lohwongwatana, Ph.D. thesis, California Institute of Technology, 2007.
Dates
Type When
Created 13 years, 11 months ago (Aug. 23, 2011, 6:22 p.m.)
Deposited 2 years ago (Aug. 3, 2023, 9:54 p.m.)
Indexed 3 weeks, 1 day ago (July 30, 2025, 6:57 a.m.)
Issued 14 years ago (Aug. 15, 2011)
Published 14 years ago (Aug. 15, 2011)
Published Online 13 years, 11 months ago (Aug. 23, 2011)
Published Print 14 years ago (Aug. 15, 2011)
Funders 0

None

@article{Bryn_Pitt_2011, title={Temperature dependence of the thermoplastic formability in bulk metallic glasses}, volume={110}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.3624666}, DOI={10.1063/1.3624666}, number={4}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Bryn Pitt, E. and Kumar, Golden and Schroers, Jan}, year={2011}, month=aug }