Abstract
The interactions of nitrogen oxides NOx (x = 1,2,3) and N2O4 with graphene and graphene oxides (GOs) were studied by the density functional theory. Optimized geometries, binding energies, and electronic structures of the gas molecule-adsorbed graphene and GO were determined on the basis of first-principles calculations. The adsorption of nitrogen oxides on GO is generally stronger than that on graphene due to the presence of the active defect sites, such as the hydroxyl and carbonyl functional groups and the carbon atom near these groups. These active defect sites increase the binding energies and enhance charge transfers from nitrogen oxides to GO, eventually leading to the chemisorption of gas molecules and the doping character transition from acceptor to donor for NO2 and NO. The interaction of nitrogen oxides with GO with various functional groups can result in the formation of hydrogen bonds OH⋅⋅⋅O (N) between –OH and nitrogen oxides and new weak covalent bonds C⋅⋅⋅N and C⋅⋅⋅O, as well as the H abstraction to form nitrous acid- and nitric acidlike moieties. The spin-polarized density of states reveals a strong hybridization of frontier orbitals of NO2 and NO3 with the electronic states around the Fermi level of GO, and gives rise to the strong acceptor doping by these molecules and remarkable charge transfers from molecules to GO, compared to NO and N2O4 adsorptions on GO. The calculated results show good agreement with experimental observations.
References
58
Referenced
187
10.1038/nmat1849
/ Nat. Mater. (2007)10.1103/RevModPhys.81.109
/ Rev. Mod. Phys. (2009)10.1038/nature04235
/ Nature (London) (2005)10.1103/PhysRevLett.100.016602
/ Phys. Rev. Lett. (2008)10.1038/nature04233
/ Nature(London) (2005)10.1103/PhysRevB.73.195411
/ Phys. Rev. B (2006)10.1103/PhysRevLett.97.216803
/ Phys. Rev. Lett. (2006)10.1038/nmat2082
/ Nat. Mater. (2007)10.1126/science.1102896
/ Science (2004)10.1039/b920754f
/ Phys. Chem. Chem. Phys. (2010)10.1103/PhysRevB.77.125416
/ Phys. Rev. B (2008)10.1038/nmat1967
/ Nat. Mater. (2007)10.1021/nl072364w
/ Nano Lett. (2008)10.1016/j.ssc.2008.04.016
/ Solid State Commun. (2008)10.1021/jp049356d
/ J. Phys. Chem. B (2004)10.1021/nl034010k
/ Nano Lett. (2003)10.1063/1.1545166
/ Appl. Phys. Lett. (2003)10.1126/science.287.5453.622
/ Science (2000)10.1016/j.cplett.2004.02.026
/ Chem. Phys. Lett. (2004)10.1063/1.1424069
/ Appl. Phys. Lett. (2001)10.1021/nl070477+
/ Nano Lett. (2007)10.1038/nnano.2008.83
/ Nat. Nanotechnol. (2008)10.1063/1.2937846
/ Appl. Phys. Lett. (2008)10.1021/nn700375n
/ ACS Nano (2008)10.1063/1.2924771
/ Appl. Phys. Lett. (2008)10.1038/nature04969
/ Nature (London) (2006)10.1038/nature06016
/ Nature (London) (2007)10.1021/nl072090c
/ Nano Lett. (2007)10.1021/nn800593m
/ ACS Nano (2009)10.1021/nl8033637
/ Nano Lett. (2009)10.1021/nl8013007
/ Nano Lett. (2008)10.1021/jp0507290
/ J. Phys. Chem. B (2005)10.1016/j.cplett.2004.02.038
/ Chem. Phys. Lett. (2004)10.1063/1.3226572
/ J. Chem. Phys. (2009)10.1063/1.458452
/ J. Chem. Phys. (1990)10.1103/PhysRevB.45.13244
/ Phys. Rev. B (1992)10.1103/PhysRevB.13.5188
/ Phys. Rev. B (1976)10.1088/0953-8984/14/11/301
/ J. Phys.: Condens. Matter (2002)10.1103/PhysRevLett.45.566
/ Phys. Rev. Lett. (1980)10.1103/PhysRevB.41.7892
/ Phys. Rev. B (1990)10.1088/0957-4484/11/2/303
/ Nanotechnology (2000)10.1021/nl034064u
/ Nano Lett. (2003)10.1063/1.1619948
/ J Chem. Phys. (2003)10.1063/1.472649
/ J. Chem. Phys. (1996)10.1103/PhysRevLett.77.3865
/ Phys. Rev. Lett. (1996)10.1126/science.1162369
/ Science (2008)10.1021/jp908801c
/ J. Phys. Chem. C (2010)10.1038/nchem.686
/ Nat. Chem. (2010)10.1103/PhysRevLett.103.086802
/ Phys. Rev. Lett. (2009)10.1021/nn900667s
/ ACS Nano (2009)10.1021/ja034898e
/ J. Am. Chem. Soc. (2003)10.1016/S0927-0256(03)00111-3
/ Comput. Mater. Sci. (2003)10.1021/nl0612289
/ Nano Lett. (2006)10.1103/PhysRevB.77.035427
/ Phys. Rev. B (2008)10.1021/ja8021686
/ J. Am. Chem. Soc. (2008)10.1021/cm060258+
/ Chem. Mater. (2006)10.1002/adfm.v19:16
/ Adv. Funct. Mater. (2009)10.1088/0953-8984/18/31/016
/ J. Phys.: Condens. Matter (2006)
Dates
Type | When |
---|---|
Created | 14 years, 7 months ago (Jan. 29, 2011, 9:48 a.m.) |
Deposited | 2 years, 1 month ago (Aug. 5, 2023, 11 p.m.) |
Indexed | 55 minutes ago (Sept. 7, 2025, 9:26 a.m.) |
Issued | 14 years, 7 months ago (Jan. 28, 2011) |
Published | 14 years, 7 months ago (Jan. 28, 2011) |
Published Online | 14 years, 7 months ago (Jan. 28, 2011) |
Published Print | 14 years, 7 months ago (Jan. 28, 2011) |
Funders
1
National Natural Science Foundation of China
10.13039/501100001809
Region: Asia
gov (National government)
Labels
11
- Chinese National Science Foundation
- Natural Science Foundation of China
- National Science Foundation of China
- NNSF of China
- NSF of China
- 国家自然科学基金委员会
- National Nature Science Foundation of China
- Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
- NSFC
- NNSF
- NNSFC
Awards
2
- 20873105
- 20733002
@article{Tang_2011, title={Adsorption of nitrogen oxides on graphene and graphene oxides: Insights from density functional calculations}, volume={134}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.3541249}, DOI={10.1063/1.3541249}, number={4}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Tang, Shaobin and Cao, Zexing}, year={2011}, month=jan }