Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The interactions of nitrogen oxides NOx (x = 1,2,3) and N2O4 with graphene and graphene oxides (GOs) were studied by the density functional theory. Optimized geometries, binding energies, and electronic structures of the gas molecule-adsorbed graphene and GO were determined on the basis of first-principles calculations. The adsorption of nitrogen oxides on GO is generally stronger than that on graphene due to the presence of the active defect sites, such as the hydroxyl and carbonyl functional groups and the carbon atom near these groups. These active defect sites increase the binding energies and enhance charge transfers from nitrogen oxides to GO, eventually leading to the chemisorption of gas molecules and the doping character transition from acceptor to donor for NO2 and NO. The interaction of nitrogen oxides with GO with various functional groups can result in the formation of hydrogen bonds OH⋅⋅⋅O (N) between –OH and nitrogen oxides and new weak covalent bonds C⋅⋅⋅N and C⋅⋅⋅O, as well as the H abstraction to form nitrous acid- and nitric acidlike moieties. The spin-polarized density of states reveals a strong hybridization of frontier orbitals of NO2 and NO3 with the electronic states around the Fermi level of GO, and gives rise to the strong acceptor doping by these molecules and remarkable charge transfers from molecules to GO, compared to NO and N2O4 adsorptions on GO. The calculated results show good agreement with experimental observations.

Bibliography

Tang, S., & Cao, Z. (2011). Adsorption of nitrogen oxides on graphene and graphene oxides: Insights from density functional calculations. The Journal of Chemical Physics, 134(4).

Authors 2
  1. Shaobin Tang (first)
  2. Zexing Cao (additional)
References 58 Referenced 187
  1. 10.1038/nmat1849 / Nat. Mater. (2007)
  2. 10.1103/RevModPhys.81.109 / Rev. Mod. Phys. (2009)
  3. 10.1038/nature04235 / Nature (London) (2005)
  4. 10.1103/PhysRevLett.100.016602 / Phys. Rev. Lett. (2008)
  5. 10.1038/nature04233 / Nature(London) (2005)
  6. 10.1103/PhysRevB.73.195411 / Phys. Rev. B (2006)
  7. 10.1103/PhysRevLett.97.216803 / Phys. Rev. Lett. (2006)
  8. 10.1038/nmat2082 / Nat. Mater. (2007)
  9. 10.1126/science.1102896 / Science (2004)
  10. 10.1039/b920754f / Phys. Chem. Chem. Phys. (2010)
  11. 10.1103/PhysRevB.77.125416 / Phys. Rev. B (2008)
  12. 10.1038/nmat1967 / Nat. Mater. (2007)
  13. 10.1021/nl072364w / Nano Lett. (2008)
  14. 10.1016/j.ssc.2008.04.016 / Solid State Commun. (2008)
  15. 10.1021/jp049356d / J. Phys. Chem. B (2004)
  16. 10.1021/nl034010k / Nano Lett. (2003)
  17. 10.1063/1.1545166 / Appl. Phys. Lett. (2003)
  18. 10.1126/science.287.5453.622 / Science (2000)
  19. 10.1016/j.cplett.2004.02.026 / Chem. Phys. Lett. (2004)
  20. 10.1063/1.1424069 / Appl. Phys. Lett. (2001)
  21. 10.1021/nl070477+ / Nano Lett. (2007)
  22. 10.1038/nnano.2008.83 / Nat. Nanotechnol. (2008)
  23. 10.1063/1.2937846 / Appl. Phys. Lett. (2008)
  24. 10.1021/nn700375n / ACS Nano (2008)
  25. 10.1063/1.2924771 / Appl. Phys. Lett. (2008)
  26. 10.1038/nature04969 / Nature (London) (2006)
  27. 10.1038/nature06016 / Nature (London) (2007)
  28. 10.1021/nl072090c / Nano Lett. (2007)
  29. 10.1021/nn800593m / ACS Nano (2009)
  30. 10.1021/nl8033637 / Nano Lett. (2009)
  31. 10.1021/nl8013007 / Nano Lett. (2008)
  32. 10.1021/jp0507290 / J. Phys. Chem. B (2005)
  33. 10.1016/j.cplett.2004.02.038 / Chem. Phys. Lett. (2004)
  34. 10.1063/1.3226572 / J. Chem. Phys. (2009)
  35. 10.1063/1.458452 / J. Chem. Phys. (1990)
  36. 10.1103/PhysRevB.45.13244 / Phys. Rev. B (1992)
  37. 10.1103/PhysRevB.13.5188 / Phys. Rev. B (1976)
  38. 10.1088/0953-8984/14/11/301 / J. Phys.: Condens. Matter (2002)
  39. 10.1103/PhysRevLett.45.566 / Phys. Rev. Lett. (1980)
  40. 10.1103/PhysRevB.41.7892 / Phys. Rev. B (1990)
  41. 10.1088/0957-4484/11/2/303 / Nanotechnology (2000)
  42. 10.1021/nl034064u / Nano Lett. (2003)
  43. 10.1063/1.1619948 / J Chem. Phys. (2003)
  44. 10.1063/1.472649 / J. Chem. Phys. (1996)
  45. 10.1103/PhysRevLett.77.3865 / Phys. Rev. Lett. (1996)
  46. 10.1126/science.1162369 / Science (2008)
  47. 10.1021/jp908801c / J. Phys. Chem. C (2010)
  48. 10.1038/nchem.686 / Nat. Chem. (2010)
  49. 10.1103/PhysRevLett.103.086802 / Phys. Rev. Lett. (2009)
  50. 10.1021/nn900667s / ACS Nano (2009)
  51. 10.1021/ja034898e / J. Am. Chem. Soc. (2003)
  52. 10.1016/S0927-0256(03)00111-3 / Comput. Mater. Sci. (2003)
  53. 10.1021/nl0612289 / Nano Lett. (2006)
  54. 10.1103/PhysRevB.77.035427 / Phys. Rev. B (2008)
  55. 10.1021/ja8021686 / J. Am. Chem. Soc. (2008)
  56. 10.1021/cm060258+ / Chem. Mater. (2006)
  57. 10.1002/adfm.v19:16 / Adv. Funct. Mater. (2009)
  58. 10.1088/0953-8984/18/31/016 / J. Phys.: Condens. Matter (2006)
Dates
Type When
Created 14 years, 7 months ago (Jan. 29, 2011, 9:48 a.m.)
Deposited 2 years, 1 month ago (Aug. 5, 2023, 11 p.m.)
Indexed 55 minutes ago (Sept. 7, 2025, 9:26 a.m.)
Issued 14 years, 7 months ago (Jan. 28, 2011)
Published 14 years, 7 months ago (Jan. 28, 2011)
Published Online 14 years, 7 months ago (Jan. 28, 2011)
Published Print 14 years, 7 months ago (Jan. 28, 2011)
Funders 1
  1. National Natural Science Foundation of China 10.13039/501100001809

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards2
    1. 20873105
    2. 20733002

@article{Tang_2011, title={Adsorption of nitrogen oxides on graphene and graphene oxides: Insights from density functional calculations}, volume={134}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.3541249}, DOI={10.1063/1.3541249}, number={4}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Tang, Shaobin and Cao, Zexing}, year={2011}, month=jan }