Abstract
Reactive-ion molecular-beam epitaxy has been used to grow epitaxial hexagonal-structure α-GaN on Al2O3(0001) and Al2O3(011̄2) substrates and metastable zinc-blende-structure β-GaN on MgO(001) under the following conditions: growth temperature Ts=450–800 °C; incident N+2/Ga flux ratio JN+2/JGa=1–5; and N+2 kinetic energy EN+2=35–90 eV. The surface structure of the α-GaN films was (1×1), with an ≊3% contraction in the in-plane lattice constant for films grown on Al2O3(0001), while the β-GaN films exhibited a 90°-rotated two-domain (4×1) reconstruction. Using a combination of in situ reflection high-energy electron diffraction, double-crystal x-ray diffraction, and cross-sectional transmission electron microscopy, the film/substrate epitaxial relationships were determined to be: (0001)GaN∥ (0001)Al2O3 with [21̄1̄0]GaN∥[11̄00]Al2O3 and [11̄00]GaN∥[12̄10]Al2O3, (21̄1̄0)GaN∥(011̄2)Al2O3 with [0001]GaN∥[01̄11]Al2O3 and [01̄10]GaN∥[21̄1̄0]Al2O3, and (001)GaN∥(001)MgO with [001]GaN∥[001]MgO. Films with the lowest extended defect number densities (nd≂1010 cm−2 threading dislocations with Burgers vector a0/3<112̄0≳) and the smallest x-ray-diffraction ω rocking curve widths (5 min) were obtained using Al2O3(0001) substrates, Ts≥650 °C, JN+2/JGa≥3.5, and EN+2=35 eV. Higher N+2 acceleration energies during deposition resulted in increased residual defect densities. In addition, EN+2 and JN+2/JGa were found to have a strong effect on film growth kinetics through a competition between collisionally induced dissociative chemisorption of N2 and stimulated desorption of Ga as described by a simple kinetic growth model. The room-temperature resistivity of as-deposited GaN films grown at Ts=600–700 °C with EN+2=35 eV increased by seven orders of magnitude, from 10−1 to 106 Ω cm, with an increase in JN+2/JGa from 1.7 to 5.0. Hall measurements on the more conductive samples yielded typical electron carrier concentrations of 2×1018 cm−3 with mobilities of 30–40 cm2 V−1 s−1. The room-temperature optical band gaps of α-GaN and β-GaN were 3.41 and 3.21 eV, respectively.
References
79
Referenced
387
10.1063/1.1652845
/ Appl. Phys. Lett. (1969)10.1103/PhysRevB.7.1479
/ Phys. Rev. B (1973)10.1016/0025-5408(70)90028-0
/ Mater. Res. Bull. (1970)10.1016/0022-0248(84)90070-8
/ J. Cryst. Growth (1984){'key': '2024020416160155600_r5'}
10.1016/0038-1101(76)90042-3
/ Solid-State Electron. (1976)10.1002/pssb.2220660117
/ Phys. Status Solidi B (1974)10.1103/PhysRevB.45.1159
/ Phys. Rev. B (1992){'key': '2024020416160155600_r9'}
10.1016/0146-3535(88)90005-6
/ Prog. Cryst. Growth Charact. (1988)10.1109/5.90133
/ Proc. IEEE (1991)10.1063/1.1663574
/ J. Appl. Phys. (1974)10.1002/pssa.2210260137
/ Phys. Status Solidi A (1974)10.1063/1.105239
/ Appl. Phys. Lett. (1991)10.1143/JJAP.30.L1705
/ J. Appl. Phys. (1991)10.1143/JJAP.30.L1708
/ Jpn. J. Appl. Phys. (1991)10.1063/1.96549
/ Appl. Phys. Lett. (1986)10.1016/0040-6090(88)90458-0
/ Thin Solid Films (1988)10.1016/0022-0248(89)90200-5
/ J. Cryst. Growth (1989)10.1063/1.104575
/ Appl. Phys. Lett. (1991)10.1063/1.93953
/ Appl. Phys. Lett. (1983)10.1063/1.337929
/ J. Appl. Phys. (1987)10.1063/1.341281
/ J. Appl. Phys. (1988)10.1002/crat.2170210104
/ Cryst. Res. Technol. (1986)10.1149/1.2407853
/ J. Electrochem. Soc. (1971)10.1016/0022-0248(72)90184-4
/ J. Cryst. Growth (1972)10.1016/S0022-3697(73)80090-3
/ J. Phys. Chem. Solids (1973)10.1007/BF00808049
/ J. Mater. Sci. (1978)10.1016/0022-0248(90)90548-Y
/ J. Cryst. Growth (1990)10.1016/0022-0248(71)90225-9
/ J. Cryst. Growth (1971)10.1149/1.2408280
/ J. Electrochem. Soc. (1971)10.1149/1.2396813
/ J. Electrochem. Soc. (1974)10.1149/1.2403365
/ J. Electrochem. Soc. (1973)10.1016/0022-0248(77)90011-2
/ J. Cryst. Growth (1977)10.1063/1.106948
/ Appl. Phys. Lett. (1992)10.1063/1.93952
/ Appl. Phys. Lett. (1983)10.1116/1.582496
/ J. Vac. Sci. Technol. B (1983)10.1063/1.329998
/ J. Appl. Phys. (1982){'key': '2024020416160155600_r39', 'first-page': '525', 'volume': '162', 'year': '1990', 'journal-title': 'Mater. Res. Soc. Symp. Proc.'}
/ Mater. Res. Soc. Symp. Proc. (1990)10.1143/JJAP.25.L945
/ Jpn. J. Appl. Phys. (1986)10.1063/1.96643
/ Appl. Phys. Lett. (1986){'key': '2024020416160155600_r42', 'first-page': '8', 'volume': '877', 'year': '1988', 'journal-title': 'SPIE'}
/ SPIE (1988)10.1116/1.575869
/ J. Vac. Sci. Technol. A (1989){'key': '2024020416160155600_r44', 'first-page': '537', 'volume': '162', 'year': '1990', 'journal-title': 'Mater. Res. Soc. Symp. Proc.'}
/ Mater. Res. Soc. Symp. Proc. (1990){'key': '2024020416160155600_r45', 'first-page': '1924', 'volume': '9', 'year': '1991', 'journal-title': 'J. Vac. Sci. Technol. B'}
/ J. Vac. Sci. Technol. B (1991)10.1063/1.106309
/ Appl. Phys. Lett. (1991){'key': '2024020416160155600_r47', 'first-page': '71', 'volume': '20', 'year': '1972', 'journal-title': 'Appl. Phys. Lett.'}
/ Appl. Phys. Lett. (1972)10.1016/0040-6090(80)90441-1
/ Thin Solid Films (1980)10.1016/0040-6090(76)90423-5
/ Thin Solid Films (1976)10.1116/1.1315693
/ J. Vac. Sci. Technol. (1969)10.1143/JJAP.20.L545
/ Jpn. J. Appl. Phys. (1981){'key': '2024020416160155600_r52', 'volume': '66', 'year': '1989', 'journal-title': 'J. Appl. Phys.'}
/ J. Appl. Phys. (1989)10.1063/1.325024
/ J. Appl. Phys. (1978)10.1016/0022-0248(90)90547-X
/ J. Cryst. Growth (1990)10.1116/1.571819
/ J. Vac. Sci. Technol. (1982)10.1149/1.2127554
/ J. Electrochem. Soc. (1981)10.1116/1.576827
/ J. Vac. Sci. Technol. A (1990)10.1063/1.1726879
/ J. Chem. Phys. (1966)10.1063/1.339930
/ J. Appl. Phys. (1988)10.1088/0305-4608/12/6/001
/ J. Phys. F (1982){'key': '2024020416160155600_r61', 'first-page': '1', 'volume': '13', 'year': '1958', 'journal-title': 'Philips Res. Rep.'}
/ Philips Res. Rep. (1958){'key': '2024020416160155600_r62'}
{'key': '2024020416160155600_r63'}
10.1016/0040-6090(85)90056-2
/ Thin Solid Films (1985)10.1103/PhysRevB.5.4039
/ Phys. Rev. B (1972)10.1063/1.106943
/ Appl. Phys. Lett. (1992){'key': '2024020416160155600_r67'}
10.1063/1.342565
/ J. Appl. Phys. (1989)10.1063/1.102303
/ Appl. Phys. Lett. (1989)10.1103/PhysRevB.40.10
/ Phys. Rev. B (1989)10.1063/1.343062
/ J. Appl. Phys. (1989)10.1116/1.576486
/ J. Vac. Sci. Technol. A (1990)10.1116/1.577136
/ J. Vac. Sci. Technol. A (1991)10.1016/0022-0248(91)91099-V
/ J. Cryst. Growth (1991){'key': '2024020416160155600_r75'}
{'key': '2024020416160155600_r76'}
10.1063/1.106344
/ Appl. Phys. Lett. (1991)10.1063/1.1663432
/ J. Appl. Phys. (1974){'key': '2024020416160155600_r79'}
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 26, 2002, 9:45 a.m.) |
Deposited | 1 year, 6 months ago (Feb. 4, 2024, 11:16 a.m.) |
Indexed | 3 weeks, 5 days ago (Aug. 6, 2025, 8:04 a.m.) |
Issued | 32 years, 8 months ago (Jan. 1, 1993) |
Published | 32 years, 8 months ago (Jan. 1, 1993) |
Published Print | 32 years, 8 months ago (Jan. 1, 1993) |
@article{Powell_1993, title={Heteroepitaxial wurtzite and zinc-blende structure GaN grown by reactive-ion molecular-beam epitaxy: Growth kinetics, microstructure, and properties}, volume={73}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.353882}, DOI={10.1063/1.353882}, number={1}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Powell, R. C. and Lee, N.-E. and Kim, Y.-W. and Greene, J. E.}, year={1993}, month=jan, pages={189–204} }