Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The structural and electronic effects of isoelectronic substitution by Ag and Cu atoms on gold cluster anions in the size range between 13 and 15 atoms are studied using a combination of photoelectron spectroscopy and first-principles density functional calculations. The most stable structures of the doped clusters are compared with those of the undoped Au clusters in the same size range. The joint experimental and theoretical study reveals a new C3v symmetric isomer for Au13−, which is present in the experiment, but has hitherto not been recognized. The global minima of Au14− and Au15− are resolved on the basis of comparison between experiment and newly computed photoelectron spectra that include spin-orbit effects. The coexistence of two isomers for Au15− is firmly established with convincing experimental evidence and theoretical calculations. The overall effect of the isoelectronic substitution is minor on the structures relative to those of the undoped clusters, except that the dopant atoms tend to lower the symmetries of the doped clusters.

Bibliography

Pal, R., Wang, L.-M., Huang, W., Wang, L.-S., & Zeng, X. C. (2011). Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun− (n = 13–15) and MAun− (n = 12–14; M = Ag, Cu). The Journal of Chemical Physics, 134(5).

Authors 5
  1. Rhitankar Pal (first)
  2. Lei-Ming Wang (additional)
  3. Wei Huang (additional)
  4. Lai-Sheng Wang (additional)
  5. Xiao Cheng Zeng (additional)
References 62 Referenced 44
  1. 10.1016/S0920-5861(96)00208-8 / Catal. Today (1997)
  2. 10.1002/anie.200300624 / Angew. Chem., Int. Ed. (2004)
  3. 10.1016/j.ica.2005.06.028 / Inorg. Chim. Acta (2005)
  4. 10.1103/PhysRevLett.98.015701 / Phys. Rev. Lett. (2007)
  5. 10.1063/1.2743005 / J. Chem. Phys. (2007)
  6. 10.1038/nnano.2007.119 / Nat. Nanotechnol. (2007)
  7. 10.1039/b717686b / Chem. Soc. Rev. (2008)
  8. 10.1039/b708613j / Chem. Soc. Rev. (2008)
  9. 10.1063/1.459475 / J. Chem. Phys. (1990)
  10. 10.1063/1.461213 / J. Chem. Phys. (1991)
  11. 10.1063/1.461865 / J. Chem. Phys. (1992)
  12. 10.1063/1.461927 / J. Chem. Phys. (1992)
  13. 10.1063/1.467535 / J. Chem. Phys. (1994)
  14. 10.1063/1.1507582 / J. Chem. Phys. (2002)
  15. 10.1063/1.1445121 / J. Chem. Phys. (2002)
  16. 10.1021/jp035437i / J. Phys. Chem. A (2003)
  17. 10.1126/science.1079879 / Science (2003)
  18. 10.1103/PhysRevLett.93.093401 / Phys. Rev. Lett. (2004)
  19. 10.1103/PhysRevLett.93.023401 / Phys. Rev. Lett. (2004)
  20. 10.1002/anie.200502795 / Angew. Chem., Int. Ed. (2005)
  21. 10.1073/pnas.0600637103 / Proc. Natl. Acad. Sci. U.S.A. (2006)
  22. 10.1103/PhysRevB.74.165423 / Phys. Rev. B (2006)
  23. 10.1002/cphc.200600524 / ChemPhysChem (2007)
  24. 10.1021/jp071960b / J. Phys. Chem. C (2007)
  25. 10.1103/PhysRevA.77.053202 / Phys. Rev. A (2008)
  26. 10.1126/science.1161166 / Science (2008)
  27. 10.1103/PhysRevB.62.R2287 / Phys. Rev. B (2000)
  28. 10.1063/1.481556 / J. Chem. Phys. (2000)
  29. 10.1103/PhysRevLett.89.033401 / Phys. Rev. Lett. (2002)
  30. 10.1103/PhysRevB.66.035418 / Phys. Rev. B (2002)
  31. 10.1002/anie.200453986 / Angew. Chem., Int. Ed. (2004)
  32. 10.1063/1.1857478 / J. Chem. Phys. (2005)
  33. 10.1063/1.2352755 / J. Chem. Phys. (2006)
  34. 10.1063/1.2179419 / J. Chem. Phys. (2006)
  35. 10.1021/nn900232d / ACS Nano (2009)
  36. 10.1103/PhysRevLett.102.153401 / Phys. Rev. Lett. (2009)
  37. 10.1063/1.3299292 / J. Chem. Phys. (2010)
  38. 10.1021/ja055407o / J. Am. Chem. Soc. (2005)
  39. 10.1002/cphc.200600472 / ChemPhysChem (2006)
  40. 10.1002/anie.200700060 / Angew. Chem., Int. Ed. (2007)
  41. 10.1063/1.3073884 / J. Chem. Phys. (2009)
  42. 10.1103/PhysRevB.79.033413 / Phys. Rev. B (2009)
  43. 10.1063/1.3356046 / J. Chem. Phys. (2010)
  44. 10.1021/ja102145g / J. Am. Chem. Soc. (2010)
  45. 10.1063/1.468817 / J. Chem. Phys. (1995)
  46. 10.1063/1.1388036 / J. Chem. Phys. (2001)
  47. 10.1016/j.cplett.2006.02.034 / Chem. Phys. Lett. (2006)
  48. 10.1103/PhysRevLett.90.033401 / Phys. Rev. Lett. (2003)
  49. 10.1002/cphc.200900994 / ChemPhysChem (2010)
  50. 10.1039/b821036e / Phys. Chem. Chem. Phys. (2009)
  51. 10.1063/1.2913153 / J. Chem. Phys. (2008)
  52. 10.1021/ja077465a / J. Am. Chem. Soc. (2007)
  53. 10.1016/S0009-2614(99)01150-1 / Chem. Phys. Lett. (1999)
  54. 10.1063/1.1606431 / J. Chem. Phys. (2003)
  55. 10.1126/science.285.5432.1368 / Science (1999)
  56. 10.1039/a709249k / New J. Chem. (1998)
  57. 10.1002/anie.200461753 / Angew. Chem., Int. Ed. (2005)
  58. 10.1063/1.1581849 / J. Chem. Phys. (2003)
  59. 10.1103/PhysRevLett.77.3865 / Phys. Rev. Lett. (1996)
  60. 10.1063/1.478522 / J. Chem. Phys. (1999)
  61. {'year': '2009', 'key': '2023080406034934400_c58'} (2009)
  62. See supplementary material at http://dx.doi.org/10.1063/1.3533443 for more information on Cartesian coordinates of low-lying isomers shown in Figs. 4–6.
Dates
Type When
Created 14 years, 6 months ago (Feb. 2, 2011, 6:24 p.m.)
Deposited 2 years ago (Aug. 4, 2023, 2:03 a.m.)
Indexed 4 weeks ago (July 30, 2025, 6:55 a.m.)
Issued 14 years, 6 months ago (Feb. 1, 2011)
Published 14 years, 6 months ago (Feb. 1, 2011)
Published Online 14 years, 6 months ago (Feb. 1, 2011)
Published Print 14 years, 6 months ago (Feb. 7, 2011)
Funders 1
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards3
    1. CHE-1036387
    2. EPS-1010094
    3. DMR-0820521

@article{Pal_2011, title={Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun− (n = 13–15) and MAun− (n = 12–14; M = Ag, Cu)}, volume={134}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.3533443}, DOI={10.1063/1.3533443}, number={5}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Pal, Rhitankar and Wang, Lei-Ming and Huang, Wei and Wang, Lai-Sheng and Zeng, Xiao Cheng}, year={2011}, month=feb }