Crossref journal-article
AIP Publishing
Journal of Applied Physics (317)
Abstract

Barium titanate (BT) and montmorillonite (MMT) nanoparticles were covalently-bonded by organically modifying the particle surfaces and chemically reacting them in solution. These integrated two-material hybrid inorganic nanofillers were subsequently dispersed in epoxy resin and nanocomposites were obtained at several weight fractions. The inorganic component consisted of well dispersed BT spherical nanoparticles that are surrounded by attached layered MMT nanoplatelets, with the latter having the ability to react with the epoxy matrix. The thermodynamic properties of the glass transition process, the macroscopic mechanical properties of the nanocomposites, and the dynamics of the polymer segments at the inorganic interfaces, all indicate that this filler configuration enhances the polymer-ceramic interfaces. Polarization as a function of electric field and dielectric breakdown show improvements in the electrical properties of these composites, compared to the corresponding unfilled epoxy, despite the expected reduction in crosslinking density. The resulting nanocomposites have a property set which can be utilized in energy storage and power system applications.

Bibliography

Polizos, G., Tomer, V., Manias, E., & Randall, C. A. (2010). Epoxy-based nanocomposites for electrical energy storage. II: Nanocomposites with nanofillers of reactive montmorillonite covalently-bonded with barium titanate. Journal of Applied Physics, 108(7).

Authors 4
  1. G. Polizos (first)
  2. V. Tomer (additional)
  3. E. Manias (additional)
  4. C. A. Randall (additional)
References 48 Referenced 59
  1. {'volume-title': 'Polymeric Nanocomposite Dielectrics', 'year': '2009', 'author': 'Nelson', 'key': '2023070401332222400_c1'} / Polymeric Nanocomposite Dielectrics by Nelson (2009)
  2. 10.1109/TDEI.2004.1349785 / IEEE Trans. Dielectr. Electr. Insul. (2004)
  3. 10.1109/TDEI.2004.1349780 / IEEE Trans. Dielectr. Electr. Insul. (2004)
  4. 10.1088/0957-4484/18/2/025703 / Nanotechnology (2007)
  5. 10.1088/0957-4484/18/32/325704 / Nanotechnology (2007)
  6. 10.1063/1.3394011 / Appl. Phys. Lett. (2010)
  7. 10.1016/S0927-796X(00)00012-7 / Mater. Sci. Eng. R. (2000)
  8. 10.1021/cm00059a023 / Chem. Mater. (1995)
  9. 10.1007/3-540-69711-X_3 / Adv. Polym. Sci. (1999)
  10. 10.1002/pola.1995.080330707 / J. Polym. Sci. A Polym. Chem. (1995)
  11. 10.1002/adma.19960080104 / Adv. Mater. (1996)
  12. 10.1021/ma030172r / Macromolecules (2003)
  13. 10.1166/jnn.2008.037 / J. Nanosci. Nanotechnol. (2008)
  14. 10.1021/cm0110627 / Chem. Mater. (2001)
  15. 10.1002/marc.200800553 / Macromol. Rapid Commun. (2009)
  16. 10.1163/156856108X379182 / J. Adhes. Sci. Technol. (2009)
  17. 10.1038/nmat1812 / Nature Mater. (2007)
  18. 10.1109/TDEI.2005.1511089 / IEEE Trans. Dielectr. Electr. Insul. (2005)
  19. 10.1088/0957-4484/16/6/016 / Nanotechnology (2005)
  20. 10.1063/1.3487275 / J. Appl. Phys. (2010)
  21. 10.1149/1.2815444 / J. Electrochem. Soc. (2008)
  22. 10.1063/1.2838481 / J. Appl. Phys. (2008)
  23. 10.1021/jp9059246 / J. Phys. Chem. A (2009)
  24. 10.1063/1.2990073 / J. Appl. Phys. (2008)
  25. 10.1088/0022-3727/34/24/310 / J. Phys. D: Appl. Phys. (2001)
  26. {'key': '2023070401332222400_c25'}
  27. 10.1016/j.polymer.2006.03.057 / Polymer (2006)
  28. 10.1002/pen.21783 / Polym. Eng. Sci. / Physical properties of epoxy resin/titanium dioxide nanocomposites
  29. 10.1109/TADVP.2003.811365 / IEEE Trans. Adv. Packag. (2003)
  30. 10.1016/S0032-3861(02)00269-0 / Polymer (2002)
  31. 10.1016/j.msea.2006.09.071 / Mater. Sci. Eng., A (2007)
  32. 10.1016/S0927-7757(01)00634-3 / Colloids Surf., A (2001)
  33. 10.1016/S0079-6700(02)00085-0 / Prog. Polym. Sci. (2003)
  34. 10.1021/la053098+ / Langmuir (2006)
  35. 10.1140/epje/i2003-10035-5 / Eur. Phys. J. E (2003)
  36. 10.1088/0957-4484/14/6/315 / Nanotechnology (2003)
  37. 10.1080/10426910701774320 / Mater. Manuf. Processes (2008)
  38. 10.1140/epje/i2001-10074-x / Eur. Phys. J. E (2002)
  39. 10.1016/j.polymer.2009.02.007 / Polymer (2009)
  40. 10.1021/ma9002853 / Macromolecules (2009)
  41. 10.1016/0032-3861(67)90021-3 / Polymer (1967)
  42. {'volume-title': 'Broadband Dielectric Spectroscopy', 'year': '2002', 'author': 'Kremer', 'key': '2023070401332222400_c41'} / Broadband Dielectric Spectroscopy by Kremer (2002)
  43. 10.1063/1.467794 / J. Chem. Phys. (1994)
  44. 10.1016/S0167-2738(01)00918-3 / Solid State Ionics (2001)
  45. 10.1109/94.544188 / IEEE Trans. Dielectr. Electr. Insul. (1996)
  46. 10.1016/0254-0584(95)01617-4 / Mater. Chem. Phys. (1996)
  47. 10.1115/1.4010337 / ASME J. Appl. Mech. (1951)
  48. 10.1088/0022-3719/19/31/020 / J. Phys. C (1986)
Dates
Type When
Created 14 years, 10 months ago (Oct. 15, 2010, 8:29 p.m.)
Deposited 2 years, 2 months ago (July 3, 2023, 9:52 p.m.)
Indexed 1 month ago (July 30, 2025, 6:55 a.m.)
Issued 14 years, 11 months ago (Oct. 1, 2010)
Published 14 years, 11 months ago (Oct. 1, 2010)
Published Online 14 years, 10 months ago (Oct. 15, 2010)
Published Print 14 years, 11 months ago (Oct. 1, 2010)
Funders 0

None

@article{Polizos_2010, title={Epoxy-based nanocomposites for electrical energy storage. II: Nanocomposites with nanofillers of reactive montmorillonite covalently-bonded with barium titanate}, volume={108}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.3487471}, DOI={10.1063/1.3487471}, number={7}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Polizos, G. and Tomer, V. and Manias, E. and Randall, C. A.}, year={2010}, month=oct }