Abstract
As assemblies of graphene sheets, carbon nanotubes, and fullerenes become components of new nanotechnologies, it is important to be able to predict the structures and properties of these systems. A problem has been that the level of quantum mechanics practical for such systems (density functional theory at the PBE level) cannot describe the London dispersion forces responsible for interaction of the graphene planes (thus graphite falls apart into graphene sheets). To provide a basis for describing these London interactions, we derive the quantum mechanics based force field for carbon (QMFF-Cx) by fitting to results from density functional theory calculations at the M06-2X level, which demonstrates accuracies for a broad class of molecules at short and medium range intermolecular distances. We carried out calculations on the dehydrogenated coronene (C24) dimer, emphasizing two geometries: parallel-displaced X (close to the observed structure in graphite crystal) and PD-Y (the lowest energy transition state for sliding graphene sheets with respect to each other). A third, eclipsed geometry is calculated to be much higher in energy. The QMFF-Cx force field leads to accurate predictions of available experimental mechanical and thermodynamics data of graphite (lattice vibrations, elastic constants, Poisson ratios, lattice modes, phonon dispersion curves, specific heat, and thermal expansion). This validates the use of M06-2X as a practical method for development of new first principles based generations of QMFF force fields.
References
99
Referenced
21
10.1002/jcc.20035
/ J. Comput. Chem. (2004){'year': '1999', 'key': '2023080103344025600_c1b'}
(1999)10.1529/biophysj.106.097782
/ Biophys. J. (2007)10.1021/ja00124a002
/ J. Am. Chem. Soc. (1995)10.1021/jp973084f
/ J. Phys. Chem. B (1998)10.1021/ja00153a017
/ J. Am. Chem. Soc. (1995)10.1002/jcc.540040211
/ J. Comput. Chem. (1983)10.1021/ja00168a022
/ J. Am. Chem. Soc. (1990)10.1021/ja00467a001
/ J. Am. Chem. Soc. (1977)10.1002/jcc.540080812
/ J. Comput. Chem. (1987)10.1021/j100389a010
/ J. Phys. Chem. (1990)10.1002/jcc.21226
/ J. Comput. Chem. (2009)10.1021/jp9034375
/ J. Phys. Chem. A (2009)10.1007/s00214-007-0310-x
/ Theor. Chim. Acta (2008)10.1021/ct0502763
/ J. Chem. Theory Comput. (2006)10.1021/ct049851d
/ J. Chem. Theory Comput. (2005)10.1063/1.2370993
/ J. Chem. Phys. (2006)10.1021/cr068010r
/ Chem. Rev. (Washington, D.C.) (2007)10.1038/nature04969
/ Nature (London) (2006)10.1038/446036a
/ Nature (London) (2007)10.1038/nature05180
/ Nature (London) (2006)10.1021/nl0617033
/ Nano Lett. (2006){'volume-title': 'The Structures of the Elements', 'year': '1974', 'key': '2023080103344025600_c15'}
/ The Structures of the Elements (1974)10.1063/1.1658609
/ J. Appl. Phys. (1970)10.1063/1.1659428
/ J. Appl. Phys. (1970)10.1103/PhysRev.128.1120
/ Phys. Rev. (1962)10.1103/PhysRevB.5.4951
/ Phys. Rev. B (1972)10.1080/14786436408211906
/ Philos. Mag. (1964)10.1016/0038-1098(79)91196-7
/ Solid State Commun. (1979)10.1016/0022-3697(58)90056-8
/ J. Phys. Chem. Solids (1958)10.1016/0022-3697(64)90180-5
/ J. Phys. Chem. Solids (1964)10.1016/0022-3697(58)90055-6
/ J. Phys. Chem. Solids (1958)10.1063/1.1663777
/ J. Appl. Phys. (1974)- See supplementary material at http://dx.doi.org/10.1063/1.3456543 for the extrapolated 0 K properties of graphite from experiment, the atom-centered charges of the DHC dimer, the QM DHC energies using 15 different basis sets, the low frequency modes of hexagonal and rhombohedral graphite, calculated at 0 K and free energies, enthalpies, and entropies as a function of temperature.
10.1016/0038-1098(77)90663-9
/ Solid State Commun. (1977)10.1103/PhysRevB.68.134305
/ Phys. Rev. B (2003){'volume-title': 'Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications', 'year': '1993', 'key': '2023080103344025600_c28'}
/ Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications (1993)10.1021/jp710918f
/ J. Phys. Chem. C (2008)10.1021/jp001766o
/ J. Phys. Chem. A (2000){'year': '2007', 'key': '2023080103344025600_c31'}
(2007){'volume-title': 'Ab Initio Molecular Orbital Theory', 'year': '1986', 'key': '2023080103344025600_c32'}
/ Ab Initio Molecular Orbital Theory (1986)10.1080/00268977000101561
/ Mol. Phys. (1970)10.1063/1.448335
/ J. Chem. Phys. (1985)10.1007/s00214-004-0624-x
/ Theor. Chem. Acc. (2005)10.1063/1.1740588
/ J. Chem. Phys. (1955)10.1063/1.456250
/ J. Chem. Phys. (1989)10.1021/j100358a012
/ J. Phys. Chem. (1989)10.1103/PhysRevB.71.205214
/ Phys. Rev. B (2005)10.1016/0038-1098(88)90660-6
/ Solid State Commun. (1988)10.1063/1.1674108
/ J. Chem. Phys. (1970)10.1002/sia.1948
/ Surf. Interface Anal. (2005)10.1103/PhysRevLett.92.075501
/ Phys. Rev. Lett. (2004)10.1103/PhysRevB.55.7927
/ Phys. Rev. B (1997)10.1103/PhysRevB.69.155406
/ Phys. Rev. B (2004)10.1143/JPSJ.10.346
/ J. Phys. Soc. Jpn. (1955){'volume-title': 'Selected Values of the Thermodynamic Properties of the Elements', 'year': '1973', 'key': '2023080103344025600_c46'}
/ Selected Values of the Thermodynamic Properties of the Elements (1973)10.1063/1.1698640
/ J. Chem. Phys. (1953){'volume-title': 'JANAF Thermochemical Tables', 'year': '1971', 'key': '2023080103344025600_c48'}
/ JANAF Thermochemical Tables (1971)10.1103/PhysRevB.48.3156
/ Phys. Rev. B (1993)10.1103/PhysRevB.56.7767
/ Phys. Rev. B (1997)10.1103/PhysRevB.65.064302
/ Phys. Rev. B (2002)10.1063/1.472684
/ J. Chem. Phys. (1996)10.1039/a606455h
/ J. Chem. Soc., Faraday Trans. (1997)10.1080/0892702031000104887
/ Mol. Simul. (2003)10.1016/0022-3115(64)90139-4
/ J. Nucl. Mater. (1964)10.1021/jp011512i
/ J. Phys. Chem. B (2001)10.1002/jcc.20078
/ J. Comput. Chem. (2004)10.1021/jp0720791
/ J. Phys. Chem. C (2007)10.1103/PhysRev.46.618
/ Phys. Rev. (1934)10.1063/1.1674902
/ J. Chem. Phys. (1971)10.1063/1.1677527
/ J. Chem. Phys. (1972)10.1063/1.456153
/ J. Chem. Phys. (1989)10.1063/1.462569
/ J. Chem. Phys. (1992)10.1021/cr00074a002
/ Chem. Rev. (Washington, D.C.) (1986)10.1007/BF01127507
/ Theor. Chim. Acta (1996)10.1007/BF02751483
/ Nuovo Cimento (1958)10.3891/acta.chem.scand.48-0095
/ Acta Chem. Scand. (1994)10.1016/S0009-2614(97)01466-8
/ Chem. Phys. Lett. (1998)10.1103/PhysRevLett.103.196401
/ Phys. Rev. Lett. (2009)10.1063/1.1722589
/ J. Appl. Phys. (1957)10.1107/S010876818400238X
/ Acta Crystallogr., Sect. B: Struct. Sci. (1984)10.1063/1.1845432
/ J. Chem. Phys. (2005)10.1063/1.1630953
/ J. Chem. Phys. (2004)10.1021/ct6002719
/ J. Chem. Theory Comput. (2007)10.1038/351464a0
/ Nature (London) (1991)10.1103/PhysRevB.26.4514
/ Phys. Rev. B (1982)10.1038/35102535
/ Nature (London) (2001)10.1073/pnas.0837064100
/ Proc. Natl. Acad. Sci. U.S.A. (2003)10.1002/anie.200390319
/ Angew. Chem., Int. Ed. (2003)10.1021/j100159a031
/ J. Phys. Chem. (1991)10.1103/PhysRevB.62.13104
/ Phys. Rev. B (2000)10.1103/PhysRevLett.90.095501
/ Phys. Rev. Lett. (2003)10.1006/jcph.1995.1039
/ J. Comput. Phys. (1995)10.1103/PhysRevB.76.035439
/ Phys. Rev. B (2007)10.1088/0959-5309/57/6/303
/ Proc. Phys. Soc. London (1945)10.1088/0959-5309/57/6/304
/ Proc. Phys. Soc. London (1945)10.1016/0008-6223(72)90011-5
/ Carbon (1972)10.1038/nmat2011
/ Nature Mater. (2007)10.1073/pnas.0901093106
/ Proc. Natl. Acad. Sci. U.S.A. (2009)
Dates
Type | When |
---|---|
Created | 14 years, 10 months ago (Oct. 6, 2010, 6:27 p.m.) |
Deposited | 1 year, 5 months ago (March 31, 2024, 1:02 a.m.) |
Indexed | 1 month ago (July 30, 2025, 6:55 a.m.) |
Issued | 14 years, 10 months ago (Oct. 6, 2010) |
Published | 14 years, 10 months ago (Oct. 6, 2010) |
Published Online | 14 years, 10 months ago (Oct. 6, 2010) |
Published Print | 14 years, 10 months ago (Oct. 7, 2010) |
@article{Pascal_2010, title={Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite}, volume={133}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.3456543}, DOI={10.1063/1.3456543}, number={13}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Pascal, Tod A. and Karasawa, Naoki and Goddard, William A.}, year={2010}, month=oct }