Abstract
Protein folding barriers can be so low that a substantial protein population diffusing in the transition state region can be detected. The very fast kinetic phase contributed by transition state transit is the molecular phase. We detect the molecular phase of the beta-sheet protein FiP35 from 60 to 83 °C by T-jump relaxation experiments. The molecular phase actually slows down slightly with increasing temperature. Thus the friction that controls the prefactor in Kramers’ transition state model does not scale with solvent viscosity. Instead, we postulate that an increase in the energy landscape roughness as the hydrophobic effect strengthens with increasing temperature explains the slowing of the molecular phase. We measured that the duration τm of the molecular phase depends slightly on the size of the T-jump, in agreement with this explanation. The τm measured here provides the best current estimate for the transit time from folded to unfolded state of a single protein molecule. We confirm this by directly comparing relaxation and single molecule signals computed by using Langevin trajectory models on a realistic FiP35 free energy surface.
References
59
Referenced
58
{'volume-title': 'Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding', 'year': '1998', 'key': '2023062604281648200_c1'}
/ Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (1998)10.1039/9781847558282
/ Protein Folding, Misfolding and Aggregation by Muñoz (2008){'key': '2023062604281648200_c3', 'first-page': '82', 'volume-title': 'Activated Barrier Crossing: Applications in Physics, Chemistry and Biology', 'author': 'Hänggi', 'year': '1993'}
/ Activated Barrier Crossing: Applications in Physics, Chemistry and Biology by Hänggi (1993){'volume-title': 'Modern Statistical Mechanics', 'year': '1989', 'key': '2023062604281648200_c4'}
/ Modern Statistical Mechanics (1989)10.1073/pnas.85.7.2029
/ Proc. Natl. Acad. Sci. U.S.A. (1988)10.1038/nature01609
/ Nature (London) (2003)10.1002/prot.10261
/ Proteins: Struct., Funct., Genet. (2003)10.1002/prot.22043
/ Proteins: Struct., Funct., Bioinf. (2008)10.1002/prot.340210302
/ Proteins (1995)10.1016/j.sbi.2007.01.001
/ Curr. Opin. Struct. Biol. (2007)10.1073/pnas.040580397
/ Proc. Natl. Acad. Sci. U.S.A. (2000)10.1073/pnas.84.21.7524
/ Proc. Natl. Acad. Sci. U.S.A. (1987)10.1016/S0031-8914(40)90098-2
/ Physica (1940)10.1126/science.1615323
/ Science (1992)10.1021/ja049966r
/ J. Am. Chem. Soc. (2004)10.1073/pnas.0806154105
/ Proc. Natl. Acad. Sci. U.S.A. (2008)10.1073/pnas.97.13.7220
/ Proc. Natl. Acad. Sci. U.S.A. (2000)10.1529/biophysj.103.039040
/ Biophys. J. (2004)10.1021/ja0493751
/ J. Am. Chem. Soc. (2004)10.1073/pnas.1833310100
/ Proc. Natl. Acad. Sci. U.S.A. (2003)10.1016/j.jmb.2005.09.070
/ J. Mol. Biol. (2005)10.1042/BST0361404
/ Biochem. Soc. Trans. (2008)10.1038/sj.embor.7400403
/ EMBO Rep. (2005)10.1063/1.1334662
/ J. Chem. Phys. (2001)10.1021/bi047314+
/ Biochemistry (2005)10.1146/annurev.physchem.52.1.499
/ Annu. Rev. Phys. Chem. (2001)10.1021/ja049510+
/ J. Am. Chem. Soc. (2004)10.1529/biophysj.104.042812
/ Biophys. J. (2004)10.1073/pnas.96.11.6031
/ Proc. Natl. Acad. Sci. U.S.A. (1999)10.1103/RevModPhys.62.251
/ Rev. Mod. Phys. (1990)10.1073/pnas.0711908105
/ Proc. Natl. Acad. Sci. U.S.A. (2008)10.1016/j.bpj.2009.01.024
/ Biophys. J. (2009)10.1529/biophysj.108.131565
/ Biophys. J. (2008){'year': '2009', 'key': '2023062604281648200_c34'}
(2009)10.1063/1.2714538
/ J. Chem. Phys. (2007)10.1073/pnas.0905466106
/ Proc. Natl. Acad. Sci. U.S.A. (2009)10.1529/biophysj.104.046243
/ Biophys. J. (2004)10.1073/pnas.0901178106
/ Proc. Natl. Acad. Sci. U.S.A. (2009)10.1021/ja073366l
/ J. Am. Chem. Soc. (2007)10.1016/j.jmb.2007.09.069
/ J. Mol. Biol. (2007)10.1103/PhysRevE.80.021106
/ Phys. Rev. E. (2009)10.1110/ps.8.4.841
/ Protein Sci. (1999)10.1016/S0092-8674(00)80273-1
/ Cell (1997)10.1021/bi00859a010
/ Biochemistry (1967)10.1021/jp052373y
/ J. Phys. Chem. B (2005){'volume-title': 'Principles of Fluorescence Spectroscopy', 'year': '1983', 'key': '2023062604281648200_c46'}
/ Principles of Fluorescence Spectroscopy (1983)10.1006/jmbi.2001.4873
/ J. Mol. Biol. (2001)10.1021/bi050118y
/ Biochemistry (2005)10.1063/1.1147137
/ Rev. Sci. Instrum. (1996)10.1016/S1011-1344(00)00002-6
/ J. Photochem. Photobiol. B (2000)10.1002/jcc.20311
/ J. Comput. Chem. (2006)10.1063/1.1630572
/ J. Chem. Phys. (2004)10.1016/j.crvi.2005.02.007
/ C. R. Biol. (2005)10.1002/prot.21789
/ Proteins: Struct., Funct., Bioinf. (2008)10.1021/jp015514e
/ J. Phys. Chem. B (2002)10.1051/jp1:1997168
/ J. Phys. I (1997)10.1088/1367-2630/7/1/034
/ New J. Phys. (2005)10.1073/pnas.0606506104
/ Proc. Natl. Acad. Sci. U.S.A. (2007)10.1073/pnas.0409270102
/ Proc. Natl. Acad. Sci. U.S.A. (2005)
Dates
Type | When |
---|---|
Created | 15 years, 9 months ago (Nov. 17, 2009, 10:04 p.m.) |
Deposited | 1 year, 5 months ago (March 17, 2024, 2:18 p.m.) |
Indexed | 1 month, 1 week ago (July 30, 2025, 6:53 a.m.) |
Issued | 15 years, 9 months ago (Nov. 16, 2009) |
Published | 15 years, 9 months ago (Nov. 16, 2009) |
Published Online | 15 years, 9 months ago (Nov. 16, 2009) |
Published Print | 15 years, 9 months ago (Nov. 21, 2009) |
@article{Liu_2009, title={The transition state transit time of WW domain folding is controlled by energy landscape roughness}, volume={131}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.3262489}, DOI={10.1063/1.3262489}, number={19}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Liu, Feng and Nakaema, Marcelo and Gruebele, Martin}, year={2009}, month=nov }