Crossref journal-article
AIP Publishing
Journal of Applied Physics (317)
Abstract

Silicon thermal conductivities are obtained from the solution of the linearized phonon Boltzmann transport equation without the use of any parameter-fitting. Perturbation theory is used to compute the strength of three-phonon and isotope scattering mechanisms. Matrix elements based on Fermi’s golden rule are computed exactly without assuming either average or mode-dependent Grüeisen parameters, and with no underlying assumptions of crystal isotropy. The environment-dependent interatomic potential is employed to describe the interatomic force constants and the perturbing Hamiltonians. A detailed methodology to accurately find three-phonon processes satisfying energy- and momentum-conservation rules is also described. Bulk silicon thermal conductivity values are computed across a range of temperatures and shown to match experimental data very well. It is found that about two-thirds of the heat transport in bulk silicon may be attributed to transverse acoustic modes. Effective relaxation times and mean free paths are computed in order to provide a more complete picture of the detailed transport mechanisms and for use with carrier transport models based on the Boltzmann transport equation.

Bibliography

Pascual-Gutiérrez, J. A., Murthy, J. Y., & Viskanta, R. (2009). Thermal conductivity and phonon transport properties of silicon using perturbation theory and the environment-dependent interatomic potential. Journal of Applied Physics, 106(6).

Authors 3
  1. José A. Pascual-Gutiérrez (first)
  2. Jayathi Y. Murthy (additional)
  3. Raymond Viskanta (additional)
References 40 Referenced 30
  1. 10.1023/A:1010003718481 / J. Nanopart. Res. (2000)
  2. 10.1016/S1748-0132(07)70018-X / Nanotoday (2007)
  3. 10.1109/TDMR.2004.840855 / IEEE Trans. Device Mater. Reliab. (2004)
  4. 10.1115/1.1454111 / ASME J. Heat Transfer (2002)
  5. 10.1063/1.1524305 / J. Appl. Phys. (2003)
  6. 10.1115/1.3072927 / ASME J. Heat Transfer (2009)
  7. 10.1063/1.2767870 / J. Appl. Phys. (2007)
  8. 10.1063/1.1616981 / Appl. Phys. Lett. (2003)
  9. {'volume-title': 'Microscale Energy Transport', 'year': '1998', 'author': 'Tien', 'key': '2023062518592529000_c9'} / Microscale Energy Transport by Tien (1998)
  10. {'volume-title': 'Electrons and Phonons', 'year': '1960', 'key': '2023062518592529000_c10'} / Electrons and Phonons (1960)
  11. {'volume-title': 'The Physics of Phonons', 'year': '1990', 'key': '2023062518592529000_c11'} / The Physics of Phonons (1990)
  12. 10.1115/1.1833367 / ASME J. Heat Transfer (2004)
  13. {'year': '2008', 'key': '2023062518592529000_c13'} (2008)
  14. {'key': '2023062518592529000_c14', 'first-page': '661', 'volume': 'A112', 'year': '1926', 'journal-title': 'Proc. R. Soc. London'} / Proc. R. Soc. London (1926)
  15. 10.1115/1.2910673 / ASME J. Heat Transfer (1993)
  16. 10.1063/1.354111 / J. Appl. Phys. (1993)
  17. 10.1103/PhysRev.132.2461 / Phys. Rev. (1963)
  18. 10.1103/PhysRev.134.A471 / Phys. Rev. (1964)
  19. 10.1103/PhysRevB.69.094303 / Phys. Rev. B (2004)
  20. {'volume-title': 'Solid State Physics', 'year': '1958', 'author': 'Seitz', 'key': '2023062518592529000_c20'} / Solid State Physics by Seitz (1958)
  21. 10.1016/0022-3697(80)90210-3 / J. Phys. Chem. Solids (1980)
  22. 10.1103/PhysRevB.48.6033 / Phys. Rev. B (1993)
  23. 10.1103/PhysRevB.58.1544 / Phys. Rev. B (1998)
  24. 10.1063/1.1345515 / J. Appl. Phys. (2001)
  25. 10.1103/PhysRevB.79.155413 / Phys. Rev. B (2009)
  26. 10.1103/PhysRevB.53.9064 / Phys. Rev. B (1995)
  27. {'key': '2023062518592529000_c27', 'first-page': '1537', 'volume': '19', 'year': '1997', 'journal-title': 'Nuovo Cimento D'} / Nuovo Cimento D (1997)
  28. 10.1103/PhysRevB.67.144305 / Phys. Rev. B (2003)
  29. 10.1103/PhysRevB.72.014308 / Phys. Rev. B (2005)
  30. 10.1063/1.2822891 / Appl. Phys. Lett. (2007)
  31. 10.1063/1.2364062 / Appl. Phys. Lett. (2006)
  32. 10.1166/jctn.2008.001a / J. Comput. Theor. Nanosci. (2008)
  33. 10.1063/1.2963721 / J. Appl. Phys. (2008)
  34. 10.1103/PhysRevB.56.8542 / Phys. Rev. B (1997)
  35. 10.1103/PhysRevB.58.2539 / Phys. Rev. B (1998)
  36. {'key': '2023062518592529000_c36'}
  37. {'volume-title': 'Thermal Conductivity of Metallic Elements and Alloys: Thermophysical Properties of Materials', 'year': '1970', 'key': '2023062518592529000_c37'} / Thermal Conductivity of Metallic Elements and Alloys: Thermophysical Properties of Materials (1970)
  38. 10.1088/0370-1328/88/2/318 / Proc. Phys. Soc. London (1966)
  39. 10.1063/1.123994 / Appl. Phys. Lett. (1999)
  40. 10.1016/S0038-1098(00)00172-1 / Solid State Commun. (2000)
Dates
Type When
Created 15 years, 11 months ago (Sept. 28, 2009, 3:43 p.m.)
Deposited 2 years, 2 months ago (June 25, 2023, 2:59 p.m.)
Indexed 1 month, 1 week ago (July 30, 2025, 6:53 a.m.)
Issued 15 years, 11 months ago (Sept. 15, 2009)
Published 15 years, 11 months ago (Sept. 15, 2009)
Published Online 15 years, 11 months ago (Sept. 28, 2009)
Published Print 15 years, 11 months ago (Sept. 15, 2009)
Funders 0

None

@article{Pascual_Guti_rrez_2009, title={Thermal conductivity and phonon transport properties of silicon using perturbation theory and the environment-dependent interatomic potential}, volume={106}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.3195080}, DOI={10.1063/1.3195080}, number={6}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Pascual-Gutiérrez, José A. and Murthy, Jayathi Y. and Viskanta, Raymond}, year={2009}, month=sep }