Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

A silicone-based one-transistor nonvolatile memory cell has been implemented by integration of a ferroelectric polymer gate on a standard n-type metal oxide semiconductor field effect transistor. The polarization reversal in the gate results in a stable and reproducible memory effect changing the source-drain current by a factor 102–103, with the retention exceeding 2–3 days. Analysis of the drain current relaxation and time-resolved study of the spontaneous polarization via piezoforce scanning probe microscopy indicates that the retention loss is controlled by the interface-adjacent charge injection rather than the polarization instability. A semiquantitative model describes the time-dependent retention loss characterized by an exponential decay of the open state current of the transistor. The unique combination of properties of the ferroelectric copolymer of vinylidene fluoride and trifluoroethylene, including an adequate spontaneous polarization and low dielectric constant as well as rather benign processing demands, makes this material a promising candidate for memories fully compatible with silicon technology.

Bibliography

Gysel, R., Stolichnov, I., Tagantsev, A. K., Riester, S. W. E., Setter, N., Salvatore, G. A., Bouvet, D., & Ionescu, A. M. (2009). Retention in nonvolatile silicon transistors with an organic ferroelectric gate. Applied Physics Letters, 94(26).

Authors 8
  1. Roman Gysel (first)
  2. Igor Stolichnov (additional)
  3. Alexander K. Tagantsev (additional)
  4. Sebastian W. E. Riester (additional)
  5. Nava Setter (additional)
  6. Giovanni A. Salvatore (additional)
  7. Didier Bouvet (additional)
  8. Adrian M. Ionescu (additional)
References 19 Referenced 19
  1. I. M. Ross, U.S. Patent No. 2,791,760 (7 May 1957). (10.1136/bmj.2.5047.760)
  2. 10.1109/T-ED.1963.15245 / IEEE Trans. Electron Devices (1963)
  3. 10.1109/T-ED.1974.17955 / IEEE Trans. Electron Devices (1974)
  4. 10.1143/JJAP.25.590 / Jpn. J. Appl. Phys., Part 1 (1986)
  5. 10.1126/science.276.5310.238 / Science (1997)
  6. 10.1109/LED.2002.1015207 / IEEE Electron Device Lett. (2002)
  7. 10.1063/1.1806274 / Appl. Phys. Lett. (2004)
  8. 10.1063/1.2817646 / J. Appl. Phys. (2007)
  9. 10.1143/JJAP.47.8472 / Jpn. J. Appl. Phys. (2008)
  10. 10.1063/1.1785836 / J. Appl. Phys. (2004)
  11. 10.1063/1.2749841 / Appl. Phys. Lett. (2007)
  12. 10.1038/nmat1329 / Nature Mater. (2005)
  13. 10.1038/nmat2185 / Nature Mater. (2008)
  14. 10.1063/1.2907990 / J. Appl. Phys. (2008)
  15. 10.1063/1.107693 / Appl. Phys. Lett. (1992)
  16. 10.1116/1.589143 / J. Vac. Sci. Technol. B (1996)
  17. 10.1063/1.1805190 / J. Appl. Phys. (2004)
  18. {'volume-title': 'The Theory of Dielectric Breakdown in Solids', 'year': '1964', 'key': '2023070223594490900_c18'} / The Theory of Dielectric Breakdown in Solids (1964)
  19. {'volume-title': 'Principles of Electronic Materials and Devices', 'year': '2002', 'key': '2023070223594490900_c19'} / Principles of Electronic Materials and Devices (2002)
Dates
Type When
Created 16 years, 1 month ago (July 2, 2009, 6:20 p.m.)
Deposited 2 years, 1 month ago (July 2, 2023, 7:59 p.m.)
Indexed 4 weeks, 1 day ago (July 30, 2025, 6:53 a.m.)
Issued 16 years, 1 month ago (June 29, 2009)
Published 16 years, 1 month ago (June 29, 2009)
Published Online 16 years, 1 month ago (July 1, 2009)
Published Print 16 years, 1 month ago (June 29, 2009)
Funders 0

None

@article{Gysel_2009, title={Retention in nonvolatile silicon transistors with an organic ferroelectric gate}, volume={94}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.3158959}, DOI={10.1063/1.3158959}, number={26}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Gysel, Roman and Stolichnov, Igor and Tagantsev, Alexander K. and Riester, Sebastian W. E. and Setter, Nava and Salvatore, Giovanni A. and Bouvet, Didier and Ionescu, Adrian M.}, year={2009}, month=jun }