Abstract
Here we investigate a family of isotropic waterlike glass-forming liquids, in which each thermodynamic state point corresponds to a different potential energy surface which is prescribed to reproduce the gOO(r;T,ρ) of the reference TIP4P-Ew water model potential. Although each isotropic potential is simulated separately, together the family of isotropic potentials displays anomalous dynamics with density and fragile diffusivity with temperature. By removing a common energy landscape, and therefore expected thermodynamic trends with temperature within a single potential, we can more rigorously evaluate whether various entropic measures used in popular phenomenological thermodynamic theories can quantitatively predict the diffusivity or viscosity. We find that the Adam–Gibbs relation between diffusion (or viscosity) and the temperature scaled configurational entropy, Sc, is a poor predictor of fragility trends and density anomalies when necessary anharmonic corrections are added. By contrast the Dzugutov scaling relationship that uses the pair correlation approximation to Sexcess∼S2 provides excellent agreement for diffusion anomalies and for fragile dynamics for weakly supercooled states for the family of isotropic potentials, within a single isotropic potential, and for the TIP4P-Ew model, but deviates strongly in all three cases at more deeply supercooled temperatures. By studying the microscopic dynamics at these low temperatures, we find an increased heterogeneity in the mobility of particle populations reflected in a highly non-Gaussian distribution of particle displacements, even at very long time scales. We conclude that after the onset of dynamical heterogeneity, new consideration of higher structural correlations and/or more complex connectivity paths between basins through barriers appear to be critical for the formulation of a predictive theory for dynamics.
References
50
Referenced
33
10.1063/1.1696442
/ J. Chem. Phys. (1965)10.1038/31146
/ Nature (London) (1998)10.1038/35018034
/ Nature (London) (2000)10.1063/1.2409932
/ J. Chem. Phys. (2006)10.1126/science.267.5206.1924
/ Science (1995)10.1063/1.476348
/ J. Chem. Phys. (1998)10.1111/j.1151-2916.1992.tb05537.x
/ J. Am. Ceram. Soc. (1992)10.1111/j.1749-6632.1976.tb39693.x
/ Ann. N.Y. Acad. Sci. (1976)10.1103/PhysRevA.15.2545
/ Phys. Rev. A (1977)10.1038/381137a0
/ Nature (London) (1996)10.1088/0953-8984/11/28/303
/ J. Phys.: Condens. Matter (1999)10.1063/1.1676399
/ J. Chem. Phys. (1971)10.1103/PhysRevA.40.3817
/ Phys. Rev. A (1989)10.1063/1.2753154
/ J. Chem. Phys. (2007)10.1063/1.2390710
/ J. Chem. Phys. (2006)10.1021/jp064816j
/ J. Phys. Chem. B (2006)10.1103/PhysRevLett.85.594
/ Phys. Rev. Lett. (2000)10.1038/35051524
/ Nature (London) (2001)10.1063/1.2336197
/ J. Chem. Phys. (2006)10.1063/1.2780863
/ J. Chem. Phys. (2007)10.1063/1.2715953
/ J. Chem. Phys. (2007)10.1063/1.1683075
/ J. Chem. Phys. (2004)10.1038/35053024
/ Nature (London) (2001)10.1103/PhysRevE.62.993
/ Phys. Rev. E (2000)10.1063/1.1434997
/ J. Chem. Phys. (2002)10.1080/00268970110056889
/ Mol. Phys. (2001)10.1103/PhysRevE.47.2484
/ Phys. Rev. E (1993)10.1063/1.463940
/ J. Chem. Phys. (1992)10.1063/1.439486
/ J. Chem. Phys. (1980)10.1088/0953-8984/12/29/323
/ J. Phys.: Condens. Matter (2000){'volume-title': 'Understanding Molecular Simulation: From Algorithms to Applications', 'year': '2002', 'key': '2023071808463951400_c29'}
/ Understanding Molecular Simulation: From Algorithms to Applications (2002){'volume-title': 'Numerical Recipes: The Art of Scientific Computing', 'year': '2007', 'key': '2023071808463951400_c30'}
/ Numerical Recipes: The Art of Scientific Computing (2007)10.1088/1742-5468/2005/05/P05015
/ J. Stat. Mech.: Theory Exp.10.1126/science.267.5206.1935
/ Science (1995){'edition': '3rd ed.', 'volume-title': 'Theory of Simple Liquids', 'year': '2006', 'key': '2023071808463951400_c33'}
/ Theory of Simple Liquids (2006)10.1103/PhysRevE.78.051201
/ Phys. Rev. E (2008)- W. P. Krekelberg, T. Kumar, J. Mittal, J. R. Errington, and T. M. Truskett, arXiv:0901.3169v2 (2009).
10.1103/PhysRevE.76.051201
/ Phys. Rev. E (2007)10.1002/cphc.200400610
/ ChemPhysChem (2005)10.1146/annurev.physchem.51.1.99
/ Annu. Rev. Phys. Chem. (2000)10.1021/jp9640989
/ J. Phys. Chem. B (1997)10.1103/PhysRevE.60.6757
/ Phys. Rev. E (1999)10.1103/PhysRevE.69.041202
/ Phys. Rev. E (2004)10.1073/pnas.0504820102
/ Proc. Natl. Acad. Sci. U.S.A. (2005)10.1103/PhysRevLett.76.2730
/ Phys. Rev. Lett. (1996)10.1140/epje/i2002-10080-6
/ Eur. Phys. J. E (2002)10.1103/PhysRevE.67.031506
/ Phys. Rev. E (2003)10.1016/0003-4916(61)90188-9
/ Ann. Phys. (1961)10.1103/PhysRevA.42.4972
/ Phys. Rev. A (1990){'edition': '3rd ed.', 'volume-title': 'Statistical Physics', 'year': '1980', 'key': '2023071808463951400_c48'}
/ Statistical Physics (1980)
Dates
Type | When |
---|---|
Created | 16 years, 2 months ago (June 8, 2009, 10:51 a.m.) |
Deposited | 2 years, 1 month ago (July 18, 2023, 4:46 a.m.) |
Indexed | 3 weeks, 1 day ago (July 30, 2025, 6:53 a.m.) |
Issued | 16 years, 2 months ago (June 5, 2009) |
Published | 16 years, 2 months ago (June 5, 2009) |
Published Online | 16 years, 2 months ago (June 5, 2009) |
Published Print | 16 years, 2 months ago (June 7, 2009) |
@article{Johnson_2009, title={Assessing thermodynamic-dynamic relationships for waterlike liquids}, volume={130}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.3140608}, DOI={10.1063/1.3140608}, number={21}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Johnson, Margaret E. and Head-Gordon, Teresa}, year={2009}, month=jun }