Abstract
Second order Møller–Plesset perturbation theory at the complete basis set limit and diffusion quantum Monte Carlo are used to examine several low energy isomers of the water hexamer. Both approaches predict the so-called prism to be the lowest energy isomer, followed by cage, book, and cyclic isomers. The energies of the four isomers are very similar, all being within 10–15 meV/H2O. These reference data are then used to evaluate the performance of several density-functional theory exchange-correlation (xc) functionals. A subset of the xc functionals tested for smaller water clusters [I. Santra et al., J. Chem. Phys. 127, 184104 (2007)] has been considered. While certain functionals do a reasonable job at predicting the absolute dissociation energies of the various isomers (coming within 10–20 meV/H2O), none predict the correct energetic ordering of the four isomers nor does any predict the correct low total energy isomer. All xc functionals tested either predict the book or cyclic isomers to have the largest dissociation energies. A many-body decomposition of the total interaction energies within the hexamers leads to the conclusion that the failure lies in the poor description of van der Waals (dispersion) forces in the xc functionals considered. It is shown that the addition of an empirical pairwise (attractive) C6R−6 correction to certain functionals allows for an improved energetic ordering of the hexamers. The relevance of these results to density-functional simulations of liquid water is also briefly discussed.
Bibliography
Santra, B., Michaelides, A., Fuchs, M., Tkatchenko, A., Filippi, C., & Scheffler, M. (2008). On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions. The Journal of Chemical Physics, 129(19).
References
124
Referenced
212
10.1063/1.2790009
/ J. Chem. Phys. (2007)10.1063/1.1344891
/ J. Chem. Phys. (2001)10.1021/j100043a023
/ J. Phys. Chem. (1995)10.1021/ct049851d
/ J. Chem. Theory Comput. (2005)10.1021/jp052436c
/ J. Phys. Chem. B (2005)10.1021/jp077376k
/ J. Phys. Chem. A (2008)10.1021/jp047502+
/ J. Phys. Chem. A (2004)10.1021/jp0377073
/ J. Phys. Chem. A (2004)10.1021/jp055127v
/ J. Phys. Chem. B (2006)10.1063/1.1813431
/ J. Chem. Phys. (2004)10.1021/jp0570770
/ J. Phys. Chem. A (2006)10.1063/1.1828433
/ J. Chem. Phys. (2005)10.1126/science.1096205
/ Science (2004)10.1126/science.1102560
/ Science (2004)10.1063/1.1630560
/ J. Chem. Phys. (2004)10.1063/1.2354158
/ J. Chem. Phys. (2006)10.1063/1.2718521
/ J. Chem. Phys. (2007)10.1063/1.1908913
/ J. Chem. Phys. (2005)10.1016/j.susc.2007.09.012
/ Surf. Sci. (2007)10.1007/s00339-006-3695-9
/ Appl. Phys. A: Mater. Sci. Process. (2006)10.1126/science.1065483
/ Science (2002)10.1103/PhysRevLett.92.136104
/ Phys. Rev. Lett. (2004)10.1063/1.1328746
/ J. Chem. Phys. (2001)10.1103/PhysRevB.69.195404
/ Phys. Rev. B (2004)10.1038/nmat1940
/ Nature Mater. (2007)10.1039/b616689j
/ Faraday Discuss. (2007)10.1073/pnas.0308730100
/ Proc. Natl. Acad. Sci. U.S.A. (2004)10.1063/1.478522
/ J. Chem. Phys. (1999)10.1063/1.475428
/ J. Chem. Phys. (1998)10.1103/PhysRevB.37.785
/ Phys. Rev. B (1988)10.1016/0009-2614(93)85438-T
/ Chem. Phys. Lett. (1993)10.1021/ja00104a047
/ J. Am. Chem. Soc. (1994)10.1038/381501a0
/ Nature (London) (1996)10.1021/jp9616019
/ J. Phys. Chem. (1996)10.1021/jp9703871
/ J. Phys. Chem. A (1997)10.1063/1.477211
/ J. Chem. Phys. (1998)10.1063/1.1487371
/ J. Chem. Phys. (2002)10.1126/science.287.5451.293
/ Science (2000)10.1063/1.1423941
/ J. Chem. Phys. (2002)10.1021/ct600366k
/ J. Chem. Theory Comput. (2007)10.1016/0009-2614(93)87016-V
/ Chem. Phys. Lett. (1993)10.1063/1.467434
/ J. Chem. Phys. (1994)10.1021/jp950696w
/ J. Phys. Chem. (1996){'volume-title': 'Physics of Ice', 'year': '2003', 'key': '2023080201530568200_c44'}
/ Physics of Ice (2003){'year': '2004', 'key': '2023080201530568200_c45'}
(2004){'year': '2006', 'key': '2023080201530568200_c46'}
(2006){'key': '2023080201530568200_c47'}
10.1063/1.478908
/ J. Chem. Phys. (1999)10.1063/1.464749
/ J. Chem. Phys. (1993)10.1103/PhysRev.126.1015
/ Phys. Rev. (1962)10.1063/1.462811
/ J. Chem. Phys. (1992)10.1063/1.473932
/ J. Chem. Phys. (1997){'key': '2023080201530568200_c53'}
10.1103/RevModPhys.73.33
/ Rev. Mod. Phys. (2001)10.1103/PhysRevLett.94.150201
/ Phys. Rev. Lett. (2005)10.1063/1.1394757
/ J. Chem. Phys. (2001)10.1063/1.1487829
/ J. Chem. Phys. (2002)10.1103/PhysRevLett.89.166102
/ Phys. Rev. Lett. (2002)10.1063/1.2770711
/ J. Chem. Phys. (2007)10.1021/jp077592t
/ J. Phys. Chem. A (2008){'key': '2023080201530568200_c61'}
10.1063/1.2746035
/ J. Chem. Phys. (2007)10.1021/jp711225x
/ J. Phys. Chem. A (2008)10.1039/b600027d
/ Phys. Chem. Chem. Phys. (2006)10.1063/1.471865
/ J. Chem. Phys. (1996)10.1002/jcc.540141112
/ J. Comput. Chem. (1993)10.1103/PhysRevLett.60.1719
/ Phys. Rev. Lett. (1988)10.1063/1.2741534
/ J. Chem. Phys. (2007){'key': '2023080201530568200_c68b', 'first-page': '109901', 'volume': '27', 'year': '2007', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. (2007){'key': '2023080201530568200_c69'}
{'key': '2023080201530568200_c70'}
10.1039/a910312k
/ Phys. Chem. Chem. Phys. (2000)10.1063/1.2338032
/ J. Chem. Phys. (2006)10.1063/1.2110165
/ J. Chem. Phys. (2005){'key': '2023080201530568200_c74', 'first-page': '11', 'volume-title': 'Electronic Structure of Solids ’91', 'author': 'Ziesche', 'year': '1991'}
/ Electronic Structure of Solids ’91 by Ziesche (1991)10.1103/PhysRevLett.77.3865
/ Phys. Rev. Lett. (1996)10.1103/PhysRevA.38.3098
/ Phys. Rev. A (1988)10.1103/PhysRevB.33.8822
/ Phys. Rev. B (1986)10.1103/PhysRevLett.91.146401
/ Phys. Rev. Lett. (2003)10.1063/1.464913
/ J. Chem. Phys. (1993)10.1139/p80-159
/ Can. J. Phys. (1980)10.1021/j100096a001
/ J. Phys. Chem. (1994)10.1063/1.476438
/ J. Chem. Phys. (1998){'year': '1990–2006', 'key': '2023080201530568200_c83'}
(1990–2006){'journal-title': 'Comput. Phys. Commun.', 'key': '2023080201530568200_c84', 'article-title': 'Ab initio molecular simulations with numeric atom-centered orbitals: FHI-aims'}
/ Comput. Phys. Commun. / Ab initio molecular simulations with numeric atom-centered orbitals: FHI-aims10.1103/PhysRevB.54.1703
/ Phys. Rev. B (1996)10.1007/s00214-005-0655-y
/ Theor. Chem. Acc. (2005){'key': '2023080201530568200_c87'}
{'key': '2023080201530568200_c88', 'first-page': '136', 'volume': '9', 'year': '1970', 'journal-title': 'Methods Comput. Phys.'}
/ Methods Comput. Phys. (1970){'key': '2023080201530568200_c89'}
{'key': '2023080201530568200_c90'}
{'key': '2023080201530568200_c91'}
{'key': '2023080201530568200_c92'}
{'key': '2023080201530568200_c93'}
10.1080/15533170701853918
/ Synth. React. Inorg., Met.-Org., Nano-Met. Chem. (2008)10.1063/1.466846
/ J. Chem. Phys. (1994)10.1016/S0301-0104(00)00189-0
/ Chem. Phys. (2000)10.1063/1.472910
/ J. Chem. Phys. (1996)10.1016/S0022-2860(01)00825-0
/ J. Mol. Struct. (2001)10.1016/0009-2614(94)01027-7
/ Chem. Phys. Lett. (1994)10.1016/0009-2614(94)01402-H
/ Chem. Phys. Lett. (1995)10.1016/0301-0104(94)00342-8
/ Chem. Phys. (1977)10.1063/1.1424928
/ J. Chem. Phys. (2002)10.1002/jcc.20078
/ J. Comput. Chem. (2004)10.1002/jcc.20570
/ J. Comput. Chem. (2007)10.1103/PhysRevLett.92.246401
/ Phys. Rev. Lett. (2004)10.1063/1.1884601
/ J. Chem. Phys. (2005)10.1103/PhysRevLett.100.053002
/ Phys. Rev. Lett. (2008)10.1103/PhysRevLett.93.153004
/ Phys. Rev. Lett. (2004){'key': '2023080201530568200_c109'}
{'key': '2023080201530568200_c110'}
{'key': '2023080201530568200_c111'}
10.1103/PhysRevB.78.045116
/ Phys. Rev. B (2008){'volume-title': 'Phys. Rev. Lett.', 'key': '2023080201530568200_c113', 'article-title': 'Accurate van-der-Waals interactions from (semi-)local density functional theory'}
/ Phys. Rev. Lett. / Accurate van-der-Waals interactions from (semi-)local density functional theory10.1021/ct0502763
/ J. Chem. Theory Comput. (2006){'key': '2023080201530568200_c115'}
{'key': '2023080201530568200_c116'}
10.1063/1.2931945
/ J. Chem. Phys. (2008){'journal-title': 'J. Phys. Chem. B', 'key': '2023080201530568200_c118', 'article-title': 'Importance of van der Waals interactions in liquid water'}
/ J. Phys. Chem. B / Importance of van der Waals interactions in liquid water10.1063/1.2965882
/ J. Chem. Phys. (2008){'key': '2023080201530568200_c120'}
{'first-page': '1', 'volume-title': 'Methods of Electronic Structure Theory', 'year': '1997', 'key': '2023080201530568200_c121'}
/ Methods of Electronic Structure Theory (1997)- See EPAPS Document No. E-JCPSA6-129-042842 for a database of the coordinates (optimized consistently with MP2, 12 DFT xc functionals, and HF with an aug-cc-pVTZ basis set and vdW corrected geometries optimized with all-electron NAOs) and the total energies (obtained with an aug-cc-pV5Z basis set) of each isomer studied here. A table with the number of H bonds in the prism isomer, obtained with various H bond definitions, is also provided as well as information on the typical computational cost of the various methods considered here. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
10.1021/j100785a001
/ J. Phys. Chem. (1964)
Dates
Type | When |
---|---|
Created | 16 years, 9 months ago (Nov. 20, 2008, 6:18 p.m.) |
Deposited | 2 years ago (Aug. 1, 2023, 10 p.m.) |
Indexed | 3 weeks, 3 days ago (July 30, 2025, 6:52 a.m.) |
Issued | 16 years, 9 months ago (Nov. 20, 2008) |
Published | 16 years, 9 months ago (Nov. 20, 2008) |
Published Online | 16 years, 9 months ago (Nov. 20, 2008) |
Published Print | 16 years, 9 months ago (Nov. 21, 2008) |
@article{Santra_2008, title={On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions}, volume={129}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.3012573}, DOI={10.1063/1.3012573}, number={19}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Santra, Biswajit and Michaelides, Angelos and Fuchs, Martin and Tkatchenko, Alexandre and Filippi, Claudia and Scheffler, Matthias}, year={2008}, month=nov }