Abstract
Unlike ideal 180° ferroelectric walls that are a unit cell wide (∼0.5 nm), real walls in ferroelectrics have been reported to be many nanometers wide (1–10 nm). Using scanning nonlinear dielectric microscopy of lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics, we show that the wall width at surfaces can vary considerably and even reach ∼100 nm in places where polar defects adjoin a wall. The consequence of such variable wall widths is investigated on the specific property of threshold field required for wall motion. Using microscopic phase-field modeling, we show that the threshold field for moving an antiparallel ferroelectric domain wall dramatically drops by two to three orders of magnitude if the wall was diffuse by only ∼1–2 nm, which agrees with experimental wall widths and threshold fields for these materials. Modeling also shows that wall broadening due to its intersection with a surface will influence the threshold field for wall motion only for very thin films (1–10 nm) where the surface broadening influences the bulk wall width. Such pre-existing and slightly diffuse domain walls with low threshold fields for wall motion may offer a general mechanism to explain significantly lower experimental coercive fields for domain reversal in ferroelectrics as compared to the thermodynamic predictions.
Bibliography
Choudhury, S., Li, Y., Odagawa, N., Vasudevarao, A., Tian, L., Capek, P., Dierolf, V., Morozovska, A. N., Eliseev, E. A., Kalinin, S., Cho, Y., Chen, L., & Gopalan, V. (2008). The influence of 180° ferroelectric domain wall width on the threshold field for wall motion. Journal of Applied Physics, 104(8).
Authors
13
- Samrat Choudhury (first)
- Yulan Li (additional)
- Nozomi Odagawa (additional)
- Aravind Vasudevarao (additional)
- L. Tian (additional)
- Pavel Capek (additional)
- Volkmar Dierolf (additional)
- Anna N. Morozovska (additional)
- Eugene A. Eliseev (additional)
- Sergei Kalinin (additional)
- Yasuo Cho (additional)
- Long-qing Chen (additional)
- Venkatraman Gopalan (additional)
References
36
Referenced
54
{'volume-title': 'Physical Metallurgy Principles', 'year': '1991', 'key': '2023070321045022300_c1'}
/ Physical Metallurgy Principles (1991)10.1080/01418619708207197
/ Philos. Mag. A (1997)10.1002/pssa.2211040132
/ Phys. Status Solidi A (1987)10.1016/0304-8853(86)90051-X
/ J. Magn. Magn. Mater. (1986)10.1103/PhysRevB.53.R5969
/ Phys. Rev. B (1996)10.1103/PhysRevB.72.104116
/ Phys. Rev. B (2005)10.1088/0953-8984/15/14/305
/ J. Phys.: Condens. Matter (2003)10.1038/nmat1151
/ Nat. Mater. (2004)10.1038/nmat2080
/ Nature Mater. (2008)10.1088/0953-8984/14/34/308
/ J. Phys.: Condens. Matter (2002)10.1088/0953-8984/10/21/005
/ J. Phys.: Condens. Matter (1998)10.1103/PhysRevB.69.064113
/ Phys. Rev. B (2004)10.1063/1.1312854
/ Appl. Phys. Lett. (2000)10.1016/j.mseb.2005.02.029
/ Mater. Sci. Eng., B (2005){'key': '2023070321045022300_c15', 'first-page': '201', 'volume': '102–103', 'year': '2003', 'journal-title': 'J. Lumin.'}
/ J. Lumin. (2003)10.1016/j.jlumin.2006.08.054
/ J. Lumin. (2007)10.1146/annurev.matsci.37.052506.084247
/ Annu. Rev. Mater. Res. (2007)- E. A. Eliseev, A. N. Morozovska, Y. L. Li, L. Q. Chen, V. Gopalan, and S. V. Kalinin, e-print arXiv:0802.2559.
10.1063/1.2979973
/ J. Appl. Phys. (2008)- also, see e-print arXiv:0802.2900v1.
10.1063/1.1146936
/ Rev. Sci. Instrum. (1996)10.1088/0957-4484/18/8/084014
/ Nanotechnology (2007)10.1103/PhysRevLett.99.186101
/ Phys. Rev. Lett. (2007)10.1063/1.2737906
/ Appl. Phys. Lett. (2007)10.1007/s00340-003-1377-2
/ Appl. Phys. B: Lasers Opt. (2004)10.1063/1.1630698
/ J. Appl. Phys. (2004)10.1103/PhysRevLett.82.4106
/ Phys. Rev. Lett. (1999)10.1080/00150198508018719
/ Ferroelectrics (1985)10.1080/00150199308211449
/ Ferroelectrics (1993)10.1088/0953-8984/19/2/022201
/ J. Phys.: Condens. Matter (2007){'key': '2023070321045022300_c29', 'first-page': '881', 'volume': '449', 'year': '2007', 'journal-title': 'Nat. Mater.'}
/ Nat. Mater. (2007)10.1143/JPSJ.46.1254
/ J. Phys. Soc. Jpn. (1979)10.1103/PhysRevB.71.184110
/ Phys. Rev. B (2005)10.1080/01411599808219188
/ Phase Transitions (1998)10.1063/1.1722712
/ J. Appl. Phys. (1957)10.1007/BF01688741
/ Czech. J. Phys., Sect. A (1958)
Dates
Type | When |
---|---|
Created | 16 years, 9 months ago (Oct. 30, 2008, 6:10 p.m.) |
Deposited | 2 years, 1 month ago (July 3, 2023, 7:59 p.m.) |
Indexed | 4 weeks, 1 day ago (July 30, 2025, 6:52 a.m.) |
Issued | 16 years, 10 months ago (Oct. 15, 2008) |
Published | 16 years, 10 months ago (Oct. 15, 2008) |
Published Online | 16 years, 9 months ago (Oct. 30, 2008) |
Published Print | 16 years, 10 months ago (Oct. 15, 2008) |
@article{Choudhury_2008, title={The influence of 180° ferroelectric domain wall width on the threshold field for wall motion}, volume={104}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.3000459}, DOI={10.1063/1.3000459}, number={8}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Choudhury, Samrat and Li, Yulan and Odagawa, Nozomi and Vasudevarao, Aravind and Tian, L. and Capek, Pavel and Dierolf, Volkmar and Morozovska, Anna N. and Eliseev, Eugene A. and Kalinin, Sergei and Cho, Yasuo and Chen, Long-qing and Gopalan, Venkatraman}, year={2008}, month=oct }