Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

Expanded ensemble methods, designed to sample a range of an order parameter λ of interest, can be optimized to overcome the difficulties associated with traversing large free-energy barriers or rugged landscapes. The optimization strategy of Trebst et al. [Phys. Rev. E 70, 046701 (2004)] is based on finding suitable biasing weights for inter-λ transitions that maximize the number of round trips that the system performs between the lower and upper λ bounds. In this work, this optimized-ensemble methodology is extended by finding weights that minimize the mean round-trip time τ (between the λ end states) for a Markovian walk. Applications are presented for an atomistically detailed model and for systems where one needs to sample a wide range of concentrations or compositions. A less rigorous method that implements a dual τ minimization (for both upward and downward trajectories) is found to be harder to converge but produce more round trips than a method based on a single τ minimization for all trajectories. While the proposed methods do not always minimize the true τ, they have performances that are either similar or better than those of the original optimized-ensemble method and provide useful information to characterize deviations from Markovian dynamics in the sampling of the λ space.

Bibliography

Escobedo, F. A., & Martinez-Veracoechea, F. J. (2008). Optimization of expanded ensemble methods. The Journal of Chemical Physics, 129(15).

Authors 2
  1. Fernando A. Escobedo (first)
  2. Francisco J. Martinez-Veracoechea (additional)
References 38 Referenced 52
  1. {'volume-title': 'Understanding Molecular Simulation: From Algorithms to Applications', 'year': '2000', 'key': '2023073102250236800_c1'} / Understanding Molecular Simulation: From Algorithms to Applications (2000)
  2. 10.1021/jp047677j / J. Phys. Chem. B (2004)
  3. 10.1063/1.462133 / J. Chem. Phys. (1992)
  4. 10.1063/1.467482 / J. Chem. Phys. (1994)
  5. 10.1063/1.470504 / J. Chem. Phys. (1995)
  6. 10.1209/0295-5075/19/6/002 / Europhys. Lett. (1992)
  7. 10.1063/1.469931 / J. Chem. Phys. (1995)
  8. 10.1002/(SICI)1096-987X(199705)18:7<920::AID-JCC5>3.0.CO;2-T / J. Comput. Chem. (1997)
  9. 10.1016/S0009-2614(00)01262-8 / Chem. Phys. Lett. (2000)
  10. 10.1103/PhysRevLett.68.9 / Phys. Rev. Lett. (1992)
  11. 10.1103/PhysRevLett.71.211 / Phys. Rev. Lett. (1993)
  12. {'key': '2023073102250236800_c8c', 'first-page': '2353', 'volume': '71', 'year': '1993', 'journal-title': 'Phys. Rev. Lett.'} / Phys. Rev. Lett. (1993)
  13. 10.1103/PhysRevLett.86.2050 / Phys. Rev. Lett. (2001)
  14. 10.1063/1.2174010 / J. Chem. Phys. (2006)
  15. 10.1103/PhysRevLett.92.097201 / Phys. Rev. Lett. (2004)
  16. 10.1103/PhysRevE.70.046701 / Phys. Rev. E (2004)
  17. 10.1103/PhysRevE.72.046704 / Phys. Rev. E (2005)
  18. 10.1103/PhysRevE.75.026109 / Phys. Rev. E (2007)
  19. 10.1021/jp801688p / J. Phys. Chem. B (2008)
  20. 10.1063/1.2800320 / J. Chem. Phys. (2007)
  21. 10.1063/1.472257 / J. Chem. Phys. (1996)
  22. 10.1016/0021-9991(76)90078-4 / J. Comput. Phys. (1976)
  23. 10.1063/1.1641000 / J. Chem. Phys. (2004)
  24. 10.1063/1.2378907 / J. Chem. Phys. (2006)
  25. 10.1063/1.1873592 / J. Chem. Phys. (2005)
  26. {'volume-title': 'Stochastic Processes in Physics and Chemistry', 'year': '1981', 'key': '2023073102250236800_c22'} / Stochastic Processes in Physics and Chemistry (1981)
  27. 10.1093/comjnl/7.4.308 / Comput. J. (1965)
  28. {'volume-title': 'Numerical Recipes in Fortran 77', 'year': '1992', 'key': '2023073102250236800_c24'} / Numerical Recipes in Fortran 77 (1992)
  29. 10.1063/1.480282 / J. Chem. Phys. (1999)
  30. {'key': '2023073102250236800_c26'}
  31. 10.1080/00268978800100743 / Mol. Phys. (1988)
  32. 10.1021/ja00334a030 / J. Am. Chem. Soc. (1984)
  33. 10.1016/S0378-3812(98)00216-7 / Fluid Phase Equilib. (1998)
  34. 10.1063/1.476429 / J. Chem. Phys. (1998)
  35. 10.1063/1.1811071 / J. Chem. Phys. (2004)
  36. 10.1063/1.1739216 / J. Chem. Phys. (2004)
  37. 10.1063/1.479206 / J. Chem. Phys. (1999)
  38. 10.1063/1.2800321 / J. Chem. Phys. (2007)
Dates
Type When
Created 16 years, 10 months ago (Oct. 20, 2008, 6:48 p.m.)
Deposited 2 years, 1 month ago (July 30, 2023, 10:25 p.m.)
Indexed 1 month ago (July 30, 2025, 6:51 a.m.)
Issued 16 years, 10 months ago (Oct. 20, 2008)
Published 16 years, 10 months ago (Oct. 20, 2008)
Published Online 16 years, 10 months ago (Oct. 20, 2008)
Published Print 16 years, 10 months ago (Oct. 21, 2008)
Funders 0

None

@article{Escobedo_2008, title={Optimization of expanded ensemble methods}, volume={129}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2994717}, DOI={10.1063/1.2994717}, number={15}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Escobedo, Fernando A. and Martinez-Veracoechea, Francisco J.}, year={2008}, month=oct }