Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

The gas phase reaction of molecular oxygen and hydrogen catalyzed by a Au3 cluster to yield H2O2 was investigated theoretically using second order Z-averaged perturbation theory, with the final energies obtained with the fully size extensive completely renormalized CR-CC(2,3) coupled cluster theory. The proposed reaction mechanism is initiated by adsorption and activation of O2 on the Au3 cluster. Molecular hydrogen then binds to the Au3O2 global minimum without an energy barrier. The reaction between the activated oxygen and hydrogen molecules proceeds through formation of hydroperoxide (HO2) and a hydrogen atom, which subsequently react to form the product hydrogen peroxide. All reactants, intermediates, and product remain bound to the gold cluster throughout the course of the reaction. The steps in the proposed reaction mechanism have low activation energy barriers below 15kcal∕mol. The overall reaction is highly exothermic by ∼30kcal∕mol.

Bibliography

Njegic, B., & Gordon, M. S. (2008). Reaction mechanism of the direct gas phase synthesis of H2O2 catalyzed by Au3. The Journal of Chemical Physics, 129(12).

Authors 2
  1. Bosiljka Njegic (first)
  2. Mark S. Gordon (additional)
References 42 Referenced 9
  1. {'edition': '5th ed.', 'volume-title': 'Kirk-Othmer Concise Encyclopedia of Chemical Technology', 'year': '2007', 'key': '2023080300464257300_c1'} / Kirk-Othmer Concise Encyclopedia of Chemical Technology (2007)
  2. {'volume': '1987', 'journal-title': 'Chem. Lett.', 'first-page': '405', 'key': '2023080300464257300_c2'} / Chem. Lett.
  3. 10.1006/jcat.1999.2540 / J. Catal. (1999)
  4. {'year': '2006', 'key': '2023080300464257300_c4', 'article-title': 'BASF, Dow, Solvay partnership breaks new ground with innovative HPPO technology in Antwerp'} / BASF, Dow, Solvay partnership breaks new ground with innovative HPPO technology in Antwerp (2006)
  5. 10.1021/cr050954d / Chem. Rev. (Washington, D.C.) (2007)
  6. 10.1016/0021-9517(91)90019-Z / J. Catal. (1991)
  7. {'volume': '2002', 'journal-title': 'Chem. Commun. (Cambridge)', 'first-page': '2058', 'key': '2023080300464257300_c7a'} / Chem. Commun. (Cambridge)
  8. {'volume': '2003', 'journal-title': 'Chem. Lett.', 'first-page': '822', 'key': '2023080300464257300_c7b'} / Chem. Lett.
  9. 10.1021/ja0381398 / J. Am. Chem. Soc. (2004)
  10. 10.1016/j.jcat.2005.09.027 / J. Catal. (2005)
  11. 10.1021/jp054809f / J. Phys. Chem. B (2006)
  12. 10.1016/S0009-2614(02)00746-7 / Chem. Phys. Lett. (2002)
  13. 10.1063/1.1587115 / J. Chem. Phys. (2003)
  14. 10.1063/1.1647118 / J. Chem. Phys. (2004)
  15. 10.1002/jcc.540070402 / J. Comput. Chem. (1986)
  16. 10.1007/BF01113251 / Theor. Chim. Acta (1992)
  17. 10.1016/0009-2614(91)90115-P / Chem. Phys. Lett. (1991)
  18. 10.1063/1.441785 / J. Chem. Phys. (1981)
  19. 10.1063/1.1675776 / J. Chem. Phys. (1971)
  20. 10.1063/1.456010 / J. Chem. Phys. (1989)
  21. 10.1021/ja00297a041 / J. Am. Chem. Soc. (1985)
  22. 10.1063/1.434152 / J. Chem. Phys. (1977)
  23. 10.1021/j100350a018 / J. Phys. Chem. (1989)
  24. 10.1021/j100317a022 / J. Phys. Chem. (1988)
  25. 10.1063/1.466883 / J. Chem. Phys. (1994)
  26. 10.1016/0009-2614(93)85024-I / Chem. Phys. Lett. (1993)
  27. 10.1007/s00214-001-0304-z / Theor. Chem. Acc. (2002)
  28. 10.1063/1.2140688 / J. Chem. Phys. (2006)
  29. 10.1021/jp072535l / J. Phys. Chem. A (2007)
  30. 10.1063/1.2137318 / J. Chem. Phys. (2005)
  31. 10.1063/1.2778419 / J. Chem. Phys. (2007)
  32. 10.1021/jp0465229 / J. Phys. Chem. B (2005)
  33. 10.1139/v92-085 / Can. J. Chem. (1992)
  34. 10.1063/1.1677527 / J. Chem. Phys. (1972)
  35. 10.1002/jcc.540141112 / J. Comput. Chem. (1993)
  36. 10.1016/B978-044451719-7/50084-6 / Theory and Applications of Computational Chemistry: The First Forty Years (2005)
  37. 10.1016/S1093-3263(99)00002-9 / J. Mol. Graphics Modell. (1998)
  38. {'volume': '1983', 'journal-title': 'J. Chem. Soc., Chem. Commun.', 'first-page': '1449', 'key': '2023080300464257300_c26'} / J. Chem. Soc., Chem. Commun.
  39. 10.1063/1.1665323 / J. Chem. Phys. (2004)
  40. 10.1021/jp027596s / J. Phys. Chem. A (2003)
  41. 10.1016/j.jcat.2004.03.028 / J. Catal. (2004)
  42. {'year': '2005', 'key': '2023080300464257300_c30'} (2005)
Dates
Type When
Created 16 years, 11 months ago (Sept. 26, 2008, 8:37 a.m.)
Deposited 2 years, 1 month ago (Aug. 2, 2023, 8:46 p.m.)
Indexed 1 month ago (July 30, 2025, 6:51 a.m.)
Issued 16 years, 11 months ago (Sept. 24, 2008)
Published 16 years, 11 months ago (Sept. 24, 2008)
Published Online 16 years, 11 months ago (Sept. 24, 2008)
Published Print 16 years, 11 months ago (Sept. 28, 2008)
Funders 0

None

@article{Njegic_2008, title={Reaction mechanism of the direct gas phase synthesis of H2O2 catalyzed by Au3}, volume={129}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.2977967}, DOI={10.1063/1.2977967}, number={12}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Njegic, Bosiljka and Gordon, Mark S.}, year={2008}, month=sep }