Abstract
Recognition of spatially varying optical properties is a necessity when studying the van der Waals–London dispersion (vdW-Ld) interactions of carbon nanotubes (CNTs) that have surfactant coatings, tubes within tubes, and/or substantial core sizes. The ideal way to address these radially dependent optical properties would be to have an analytical add-a-layer solution in cylindrical coordinates similar to the one readily available for the plane-plane geometry. However, such a formulation does not exist nor does it appear trivial to be obtained exactly. The best and most pragmatic alternative for end-users is to take the optical spectra of the many components and to use a spectral mixing formulation so as to create effective solid-cylinder spectra for use in the far-limit regime. The near-limit regime at “contact” is dominated by the optical properties of the outermost layer, and thus no spectral mixing is required. Specifically we use a combination of a parallel capacitor in the axial direction and the Bruggeman effective medium in the radial direction. We then analyze the impact of using this mixing formulation upon the effective vdW-Ld spectra and the resulting Hamaker coefficients for small and large diameter single walled CNTs (SWCNTs) in both the near- and far-limit regions. We also test the spectra of a [16,0,s+7,0,s] multiwalled CNT (MWCNT) with an effective MWCNT spectrum created by mixing its [16,0,s] and [7,0,s] SWCNT components to demonstrate nonlinear coupling effects that exist between neighboring layers. Although this paper is primarily on nanotubes, the strategies, implementation, and analysis presented are applicable and likely necessary to any system where one needs to resolve spatially varying optical properties in a particular Lifshitz formulation.
References
43
Referenced
12
10.1016/S1631-0705(03)00101-4
/ C. R. Phys. (2003)10.1016/j.physrep.2006.05.007
/ Phys. Rep. (2006)10.1021/jp047416+
/ J. Phys. Chem. B (2005)10.1016/j.mser.2003.10.001
/ Mater. Sci. Eng., R. (2004)10.1063/1.2709576
/ J. Appl. Phys. (2007)10.1016/0379-6779(96)80094-4
/ Synth. Met. (1996)10.1103/PhysRevB.70.115407
/ Phys. Rev. B (2004)10.1103/PhysRevB.76.045417
/ Phys. Rev. B (2007)10.1088/1742-6596/94/1/012001
/ J. Phys.: Conf. Ser. (2008)10.1126/science.1091911
/ Science (2003)10.1021/ja071577k
/ J. Am. Chem. Soc. (2007)10.1021/jp0452913
/ J. Phys. Chem. (2005)10.1021/ja0621501
/ J. Am. Chem. Soc. (2006){'key': '2023073120404764300_c14', 'first-page': '2011', 'volume': '20', 'year': '2004', 'journal-title': 'Langmuir'}
/ Langmuir (2004)10.1021/jp071316x
/ J. Phys. Chem. C (2007){'key': '2023073120404764300_c16', 'first-page': '73', 'volume': '2', 'year': '1956', 'journal-title': 'Sov. Phys. JETP'}
/ Sov. Phys. JETP (1956){'volume-title': 'Van der Waals Forces', 'year': '2005', 'key': '2023073120404764300_c17'}
/ Van der Waals Forces (2005)10.1111/j.1151-2916.2000.tb01527.x
/ J. Am. Ceram. Soc. (2000)10.1103/PhysRevB.74.205110
/ Phys. Rev. B (2006)10.1063/1.2150825
/ J. Chem. Phys. (2006){'key': '2023073120404764300_c21'}
10.1002/andp.19354160705
/ Ann. Phys. (N.Y.) (1935)10.1016/0040-6090(93)90299-5
/ Thin Solid Films (1993)10.1103/PhysRevB.61.10832
/ Phys. Rev. B (2000)10.1111/j.1151-2916.1990.tb06430.x
/ J. Am. Ceram. Soc. (1990)10.1103/PhysRevB.49.5133
/ Phys. Rev. B (1994)10.1103/PhysRevB.54.13546
/ Phys. Rev. B (1996)10.1103/PhysRevB.48.17695
/ Phys. Rev. B (1993)10.1103/PhysRevB.51.17379
/ Phys. Rev. B (1995){'key': '2023073120404764300_c30'}
10.1006/jcis.1996.0238
/ J. Colloid Interface Sci. (1996)10.1006/jcis.2000.7164
/ J. Colloid Interface Sci. (2000)10.1006/jcis.1996.0261
/ J. Colloid Interface Sci. (1996)10.1006/jcis.2000.7140
/ J. Colloid Interface Sci. (2000)10.1071/CH06222
/ Aust. J. Chem. (2007)10.1021/nl0259030
/ Nano Lett. (2003)10.1063/1.1811792
/ Appl. Phys. Lett. (2004)10.1103/PhysRevB.73.035415
/ Phys. Rev. B (2006){'key': '2023073120404764300_c39', 'first-page': '1', 'volume': '3', 'year': '2003', 'journal-title': 'Proc. IEEE Nanotechnol.'}
/ Proc. IEEE Nanotechnol. (2003)10.1006/jcis.2002.8239
/ J. Colloid Interface Sci. (2002){'volume-title': 'Handbook of Optical Constants of Solids', 'year': '1985', 'author': 'Palik', 'key': '2023073120404764300_c41a'}
/ Handbook of Optical Constants of Solids by Palik (1985){'volume-title': 'Handbook of Optical Constants of Solids', 'year': '1991', 'author': 'Palik', 'key': '2023073120404764300_c41b'}
/ Handbook of Optical Constants of Solids by Palik (1991){'volume-title': 'Handbook of Optical Constants of Solids', 'year': '1998', 'author': 'Palik', 'key': '2023073120404764300_c41c'}
/ Handbook of Optical Constants of Solids by Palik (1998)
Dates
Type | When |
---|---|
Created | 16 years, 11 months ago (Sept. 10, 2008, 6:46 p.m.) |
Deposited | 1 year, 5 months ago (Feb. 29, 2024, 1:31 p.m.) |
Indexed | 3 weeks, 1 day ago (July 30, 2025, 6:51 a.m.) |
Issued | 16 years, 11 months ago (Sept. 1, 2008) |
Published | 16 years, 11 months ago (Sept. 1, 2008) |
Published Online | 16 years, 11 months ago (Sept. 10, 2008) |
Published Print | 16 years, 11 months ago (Sept. 1, 2008) |
@article{Rajter_2008, title={Spectral mixing formulations for van der Waals–London dispersion interactions between multicomponent carbon nanotubes}, volume={104}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.2975207}, DOI={10.1063/1.2975207}, number={5}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Rajter, Rick and French, Roger H. and Podgornik, Rudi and Ching, W. Y. and Parsegian, V. Adrian}, year={2008}, month=sep }